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Alternative models of beliefs suit alternative questions

1. Classical, precise probabilities: Detecting climate change trend

2. Imprecise probabilities: Inductive inference for rare events

3. Information fusion (Dempster-Shafer): social construction of
belief from experts’ opinions



1. Classical, precise probabilities: Detecting climate
change trend

Is anticipation of climatic change important ?

Regarding weather-related infrastructures, assumed to last ∼55
years, compare three investment rules:

1. Reactive adaptation. Investment designed for current
temperature.

2. Simple proactive adaptation. Investment designed for
predicted temperature at capital mid-life. No model,
exponential forgetting for temperature and its trend.

3. Sophisticated proactive adaptation: Linear model with a
Kalman filter to detect climate sensitivity.



(Unknown) Trend and variability
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Temperature prediction
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Evolution of the capital stock average design temperature
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Discussion of 1. Climatic change anticipation

I Without learning, we are out of the natural variability range
by mid-century

I Proactive learning makes a difference, even with the simple
rule

I What about model uncertainty ?



2. Inference for rare events with imprecise probabilities

Probability of a wet month in Paris next year?

An imprecise answer is a probability range : 2.5 to 5 percent. It
may be better justified than a precise number:

I Trade off between precision and confidence (back of the
enveloppe calculation)

I When subjective priors inadequate, information imprecise,
data missing

I Extreme case: possibility of an event that has never been
observed.



In 219 years, 9 months over 150mm precipitation
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Inductive learning under uncertainty (ambiguity)

The frequency after the next (unknown) observation will be:

More than 9
219+1

but less than 9+1
219+1

For m positive outcomes in n trials, imprecise beta model infers:

[
m

n + s
,
m + s

n + s
] (1)

Parameter s determines the degree of imprecision in posterior
inferences. It can be interpreted as a number of additional
unknown observations.



Mathematical break: the imprecise beta model as robust
bayesian inference

Let θ denote the chance of success in a Bernouilli trials experiment.
Assume the prior on θ is the familly of PDFs

M = {β(s, t), 0 < t < 1} (2)

where the beta laws β(s, t)(θ) ∝ θst−1(1− θ)s(1−t)−1 are
parametrized by their mean t. Bayesian updating for m successes
in n trials lead to posterior PDFs

M ′ =

{
β(s + n,

st + m

s + n
), 0 < t < 1

}
(3)

The lower probability bound is

inf
p∈M′

Eθ =
m

s + n

Google “Imprecise Dirichlet Model” for the multinomial case.



Results: probability of occurence next year (per cent)

Wet month in Paris
Observation period n m s Result

1870–1989 219 9 0 4.1 sharp
219 9 1 4.1 – 4.5
219 9 2 4.1 – 5.0

1900– 89 3 1 3.3 – 4.4
1950– 39 1 1 2.5 – 5.0

Major nuclear accident
Observation period n m s Result

1950–2006 56 2 1 3.5 – 5.3
1986–2006 20 0 1 0 – 4.8



Discussion of 2: inference with imprecise probabilities

I A robust bayesian approach, imprecision meaningful when s/n
is not negligible.

I Far-reaching consequences: decision making with imprecise
expected utility, logic

I Some empirical evidence for expected value as an intervall

I Events never or rarely observed: maximum probability =
degree of possibility



[3.] Learning in the Transferable Belief Model: Fusion of
experts opinion

Possibility distribution of climate sensitivity ∆T(2×CO2) ?

‘Evidence’ to learn from:
Morgan and Keith (1995) experts elicitation survey.

Problems:

I Information given as probability distributions functions

I Experts are not independant and not equally trusted

I Conflicting opinions



Probability distribution from expert 1
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Belief function from expert 1
Define the possibility function : π(ω) =

∑
ω∈A m(A)

m({3})

m({3, 4})

m({2, 3, 4})
m({2, 3, 4, 5})

m({2, 3, 4, 5, 6})

m({2, 3, 4, 5, 6, 7})

m({2, 3, 4, 5, 6, 7, 8})
m(Ω)



Results from 16 experts: find the outlier!
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Fusion in two stages

1. Ignoring the outlier 5, and pool other expert’s belief functions
using a conjunction operator that do not assume independance
(idempotent).

2. To combine these prior beliefs with expert 5 beliefs. To learn
from new evidence, one need to model the relation with the prior :
Discount outlier’s opinion and how much ? Independance ?
Logical connection ?

I Conjunction: Pool AND 5 are true

I Disjunction: Pool OR 5 is true

I Exclusive Disjunction: Either pool XOR 5 is true, not both



Conjunction: pool AND discounted(5) are right

Combination rule
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Disjunction: OR (first two rows), XOR bottom row

Left col: a5 = 1 means consider outlier’s beliefs void (full discount)
Right col: a5 = 0 means consider them fully.

Xor a5=1 Xor a5=.5

*

Xor a5=0

*

Or a5=1 Or a5=.5 Or a5=0

Max a5=1 Max a5=.5 Max a5=0



Subjective assessment of ∆T(2×CO2)

Conjunction, discounting outlier 90 percent.
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Discussion of 3. Fusion of experts opinion

I Learning from conflicting informations requires explicit
modeling of evidence reliability and sources interactivity

I Defeasible reasoning: X XOR TRUE = ∼ X

I Formalization of social construction of belief



Conclusion: approaches to formalize learning

I Dectecting climate change matters

I Inference for rare events: imprecise models are robust

I Construction of belief: learning as combining evidence,
sometimes conflicting


