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 1. Introduction

Coupled socio-economic-physical systems are the most complex of all. They involve vastly different 
types of uncertainties, including those related to human behavior and those of a scientific nature, such 
as Earth system feedbacks. These uncertainties cannot be dealt with in a uniform manner. The 
integrated assessment community, as an evolution of the system analysis community, has been looking 
for decades to go beyond subjective probabilities to model uncertainty. 

The recent history of climate change prospective illustrates the point. A critical limitation of the 
Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios (SRES, 
2000) is that the scenarios are symmetrically presented, and no judgment is offered as to the preference 
for any of them. Admittedly, the political sensitivity of alternative plausible futures played a significant 
role in this reluctance to quantify. Yet this lack of specificity was explained by a deeper theoretical 
issue about uncertainty and probabilities. We need first to remember the difference between two kinds 
of situations, hereafter named Risk and Uncertainty.

In this text, Risk describes a situation in which all the possible outcomes are known in advance, and 
each has a probability weight. Uncertainty describes a more general class of situation in which, while 
all possible outcomes are known, probabilities may or may not available. Higher order of ignorance 
such as incompleteness and surprises and others discussed in Smithson (1988) will not be considered 
here.

This fundamental difference between risk (when probabilities are available) and uncertainty (when they 
may not be) is crucial to understand how, if not why, the IPCC declined to put probability weights on 
scenarios. This difference has been stressed by social scientists at least since Knight  (1921) and 
Keynes (1921). The dominant paradigm in the second half of the last century to model uncertainty was 
to use subjective probabilities, yet the IPCC position is only the last of a long history of challenges to 
this dominant paradigm, exemplified by Allais in 1953.

This conceptual distinction has been common in decision analysis for a long time. But until recently the 
distinction did not matter in practice for technical reasons: IPCC wrote that there was no widely 
accepted mathematical methods to deal with Uncertainty that is not Risk in integrated assessment. 
Realizing at the same time that future emissions are definitely an uncertainty situation, it was a 
legitimate way out of a political minefield when Grübler and Nakicenovic (2001) stated "the concept of 
probabilities as used in the natural sciences should not be imposed on the social sciences. Scenarios [...] 
are radically different." These leading IPCC authors' point of view was important in the refusal to 
assign probabilities to the new scenarios.

A few climate change integrated assessment using alternative uncertainty formalisms appeared in the 
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late nineties. Leimbach (1996, 1998) worked on fuzzy optimization for climate strategies. Welsch 
(1995) examined greenhouse gas abatement under ambiguity (Ambiguity is used by economists to 
name uncertainty that is not risk). While fuzzy techniques appear to be used in models of impact and 
land-use changes, so far they remain absent from energy policy decision analysis. There is no standard 
alternative to subjective probabilities in integrated assessment.

Uncertainty theories have deep historical roots, but it is only recently that they have demonstrated a 
practical engineering value. The theory of evidence using belief functions was published by Shafer in 
1976, and possibility theory (based on fuzzy sets) was proposed as a complete alternative to probability 
theory by Zadeh in 1978. The reason why these theories emerged only in the computer age is probably 
because they are better suited to numerical computations than to algebraic analysis.

Another problem is that there may be too many mathematical methods to deal with non-probabilistic 
uncertainty. Reactions to this last issue may be dogmatic (only one theory should be used), eclectic 
(each theory is good in its domain of validity) or unifying (each theory correspond to a projection of a 
more general notional theory). This paper defends the unifying conception.

2 The simplest theory of uncertainty theory: Belief functions

This section introduces a very simple theory of uncertainty, known as the Dempster-Shafer theory of 
evidence. Because we suggest to use this theory to analyze uncertainty in complex systems scenarios, 
we will consider the question of belief about which one of the forty SRES scenarios describes the 
future. So Ω=S40, and similarly the IPCC sets of six and four scenarios will be denoted S6 and S4.

The theory represents beliefs as a [0, 1]-valued function on the power set of possible futures ℘(Ω). 
One way to do so is to consider a probability distribution m (called a basic belief assignment) defined 
on all subsets of S40. For any subset of S40, for example S6, the strength of the belief that the future 
world is in S6 is given by the formula bel(S6) = Σ m(A), for all A ⊆ S6 .

The crucial point of all theories of uncertainty is that support for S6 is not equal to the absence of 
evidence against S6, so that bel(S6) is less than 1 - bel(S40 - S6). The latter is called the plausibility of 
S6 , it can also be defined as pl(S6) = Σ bel(A) , for all A such that Α ∩ S6 ≠ ∅. Beliefs may be low, but 
plausibility high: this is the key to quantifying uncertainty in scenarios.

An extreme case of this is that belief functions allow for proper vacuous priors: instead of the 
uninformative interpretation of equi-probability over S40 , the belief is defined by m(S40)=1, m(E)=0 
otherwise for any E ⊄ S40. In this situation, the plausibility of any subset is 1, but the belief of any 
proper subset is zero.

For any subset E, the basic belief m(E) represents the amount of non-specific weight of evidence given 
to E. Non-specificity means that the information can not be pointed further to any element in E. This 
allows to make judgments about classes of scenario, such as "high and rich population scenarios are not 
likely".
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bel(E) represents the strength of the belief that the real state of the world is described by a scenario in E 
. Beliefs are super-additive: bel(A ∪ B) ≥ bel(A) + bel(B) even when Α ∩ B = ∅. Note that bel(∅) 
represents the belief that the real state of the world is not in S40. It is normalized to zero if one assumes 
from the start that S40 represents the complete list of possible futures.

In sum, any of three following elements define beliefs:
A basic belief assignment, that is a probability distribution m defined on all subsets of S40.
The belief function, that is bel(E) = Σ m(A), for all A ⊆ E
The plausibility function; that is pl(S6) = Σ m(A) , for all A such that Α ∩ S6 ≠ ∅

3 The unity of uncertainty theories

Evidence theory (beliefs functions) is only one of a large number of superficially different approaches 
to uncertainty. This section outlines the main links of an unified view of uncertainty theories, referred 
to as Imprecise Probabilities theory by Walley (1991).

The first link between all uncertainty theories is the difference between "support for an idea E" and 
"absence of evidence against E". Support for E , denoted P(E), relates to the notion of belief, necessity 
or lower probability. The absence of evidence against E, that is P(E) =1 - P(Ω-E), corresponds to the 
concepts of plausibility, possibility or upper probability. Situations of risk, and only those, are 
characterized by the identity of the two notions: P(E) = 1 - P(Ω-E). In all other uncertainty situations, 
the two numbers do not add up to unity.

The second link is the correspondence between qualitative (A is more believed than B) and quantitative 
(P(A) = 0.2 is greater than P(B) =0.1) approaches. Trivially each quantitative approach represents a 
comparative ordering of beliefs. The converse is true in many interesting cases: given reasonable 
axioms on a partial order relation defined on subsets, it is often possible to find a real function 
representing the relation. This correspondence is useful because elicitation of beliefs is easier using the 
qualitative approach.

The third link is the canonical Boolean algebra homomorphism between set theory and propositional 
calculus. The union of two subsets corresponds to the disjunctive operator OR, the intersection 
corresponds to the conjunction AND, and inclusion corresponds to implication. This correspondence is 
useful because computer implementations are often easier using formal logic. It uses a small finite set 
of symbols to build an infinite number of propositions, instead of using a very large finite set of states 
of the world. In this way, propositional calculus allows to formalize, beyond situations of uncertainty, 
situations incomplete information.

This correspondence also leads to two other important remarks. First, there are many different operators 
to connect propositions. There are as many different of ways to combine beliefs. Second, the notion of 
granularity refers to how the [0, 1] interval is divided to grade beliefs. Logic divides uses just two 
points, while most other theories use the whole interval. It has been suggested that in practice, dividing 
the interval into 5 to 7 levels of confidence is enough. 
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The fourth link is the correspondence between finite, countable and continuous versions of the theories. 
With respect to these differences, probability was been unified by measure theory a long time ago. 
Similarly, belief functions defined in the previous section can be regarded as Choquet capacities of 
order infinity defined for a finite Ω.

Fifth, there are several equivalent approaches to belief functions: we have already seen basic belief 
assignment, belief function, plausibility functions and Choquet capacities (totally monotone set 
functions). There are many more. In particular, Dempster introduced the theory using many-valued 
mappings, while Shafer focused on representing beliefs as the combination of elementary pieces of 
unspecific information. These latter approaches are important, since working directly with the power 
set of the states of the world is not computationally tractable.

Six, there are inclusion links between uncertainty formalisms.

i) A probability distribution is a belief function where the basic belief assignment m is non-zero only on 
singletons. A possibility distribution is a belief function where m is non-zero only on a nested family of 
subset.

ii) Uncertainty is often represented using a convex family of probability distributions called a credal 
set. Any belief function canonically defines a core family of probability distributions F by:
 p ∈ F if and only if for any event E, bel(E) ≤ p(E) ≤ pl(E). Any probability in the core is is some sense 
compatible with beliefs, but it does not represent them completely. The core is never empty, since it 
contains the probability defined by p(ω) = Σ m(A) / |A|, for all A ⊆ Ω containing ω. This distribution 
(called the pignistic probability) spreads equally unspecific information across all possible states, it 
represents one way to derive rational betting rates under uncertainty.

The belief function can be recovered as the lower envelope of its core, but the lower envelope of a 
credal set is not necessarily a belief function.

iii) The important hindsight is that this family of probability distribution needs not to be probabilized, 
so second-order probabilities are not needed, only the extremal points matter. Given a credal set F , for 
any loss function l: Ω→ℜ, one can define its lower expectation E(l) = inf Ep(l), for all p in F. 
Reciprocally, given an arbitrary functional E(l) , it is possible to define a family F of probability 
distributions p that verify E(l) ≤ Ep(l), for all l . This establishes a one-to-one correspondence between 
convex sets of probability distributions and affinely superadditive lower expectations (Cozman, 1999). 
This is the correspondence between Walley's (1991) theory of coherent lower previsions (i.e. 
expectations) and the theory of credal sets.

To summarize this hierarchy, coherent lower previsions are the same mathematical beast as credal sets. 
They generalize belief functions. Belief functions unify probabilities and possibilities. All these 
correspondences explain at the same time a superficial diversity of uncertainty theories and a deeper 
unity. Still there remains some residual conflicts between theories which needs to be addressed.

First, there are two different paradigms on the question of decision making under uncertainty. One 

Ha-Duong, Uncertainty theory..., CASOS 2002, June 21-23th, Pittsburgh PA 4



assumes that preferences define a total order, so there is always one best choice, maybe given by the 
precautionary principle or by maximizing Choquet expected utility. The other paradigm assumes that 
under uncertainty there is only a partial order, then there is only a set of maximal choices. The unifying 
answer to this may be to extend the notion of rationality. It is already accepted that different individuals 
have different preferences with respect to risk and ambiguity, so we don't see why everybody should 
follow the same decision model under uncertainty.

Second, there are significant differences in the nature of the uncertainty being represented. For example 
an uncertainty theory dealing with statistical evidence would have different semantics than a theory 
dealing with opinions. In particular, Dempster-Shafer rejects the interpretation that there is one 
unknown probability distribution. The unifying point of view is that these differences should lead to 
different operators for combining the mathematical objects representing uncertainty.

4. Analysing uncertainty in complex systems:  Quantifying prospective scenario sets

After having defended the unifying point of view at the foundations level, we have to fall back to the 
eclectic point of view when it comes to applications. Probabilities work very well for most of 
engineering issues today, and possibilities also have their applications. To which kind of uncertainty 
analysis problems would Dempster-Shafer theory be useful? I propose to use belief functions to 
quantify uncertainty for long-term prospective scenarios, along the following lines:

Quantifying uncertainty: Uncertainty on S40 can be quantified by considering evidence from IPCC 
reports and from the larger database of all scenarios submitted during the SRES open process. 
Obviously, the belief function on S40 will not be represented by tabulating m(A) for all A ⊆ S40. Yet 
beliefs can be transferred from S40 onto the smaller S4 and S6 scenario sets and given explicitly for S4. 
Following standard practice, beliefs will be defined by and represented as the combination of 
elementary pieces of unspecific information about scenarios, such as the assumption that high per 
capita income and high population growth are not likely.

Probabilizing the scenario sets: Beliefs allow to explain the notion of a core of probability 
distributions. Picking up distributions from the core is illustrative. Different ways to parameterize value 
judgments by norms, distances and other weight factors imply different rational probability 
distributions for a given belief function. Upper and lower probabilities can be found for S4 and S6, as 
well as the pignistic probability distribution on each of these scenario sets.

Reducing the number of scenarios: For each of the 64 scenario sets obtained by deleting various 
scenarios from S6, the loss of information, the loss of plausibility and of credibility compared to S6 and 
S40 can be explored. This will make explicit how well S4 and S6 represent the uncertainty on S40. One 
can quantify (in bits) the information gap between S4 and S6. This task will identify which scenarios to 
remove from S6 and S4 in a way that minimize the information loss. It defines scenario sets S6-3, S6-1 
and S4-1, the first removing 3 scenarios from S6, the second removing 1 scenario from S6, and the last 
removing one scenario from S4. 

Extending the scenario sets: One can quantify which scenario from S40 would be the most interesting 
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to add to S6 or to S4. Interest will be defined as the overall plausibility of the scenario set, the 
credibility of the range it covers and the information content. The same questions as in the previous 
tasks will be answered: What are the probabilities of the augmented scenario sets? What is the gain in 
information, plausibility and credibility? This will lead to augmented scenario sets S6+1 and S4+1.

Comparing SRES with optimal the scenario subsets: There are 91390 ways to pick up four scenarios 
from S40. Only a few are really interesting: those maximizing plausibility, credibility and information 
content. The constructive IPCC method to define S4 and S6 in no way guarantees optimal results. I will 
study the role of rationality in the open process, and then assess its efficiency by comparing S4 with 
optimal quadruples of scenarios from S40, and also comparing S6 with an augmented S4+2 obtained by 
optimally adding two scenarios to S4.

To summarize, the principles of maximizing entropy, plausibility and credibility allow to define what is 
a interesting scenario set, which fairly represent the diversity of results in a maximally informative way.

5. Conclusion

This conclusion outlines five advanced questions relevant for future research on uncertainty.

The dynamics of uncertainty. The counterpart of stochastic dynamic programming remains to be 
explored in Uncertainty situations. A central practical question is how to reduce the curse of 
dimensionality over time by allowing time to flow on a graph (a network) instead of a tree. The fuzzy 
horizon effect is commonly used in rendering landscape on a computer. An information kinetic 
counterpart of this could be that probabilistic uncertainty decays into unspecific uncertainty over time. 
This allows decreasing conflict and effectively reuniting separated threads of time. For example, it may 
be initially known that a variable can be A with probability p, and B with probability 1-p ; but in the 
long run it is only known that the variable is either A or B. This replaces a two-cases situation by a 
single case.

Knowledge-based integrated assessment modeling. This research also paves the way for bridging 
traditional system analysis with a radically new approach to integrated assessment: defining the model 
purely as structure on the belief function. Theoretically, this approach encompasses traditional 
modeling analysis: believe only in the couples (parameters, results) that are given by the model. But 
this is more general, it allows for uncertain relationships. Early applications of this new approach can 
be found in robust modeling, fuzzy systems or constraint-based programming. One example of this 
approach is the NetWeaver method by Parker (2001).

Experimental design. Sampling is important for integrated assessment, as some coupled models of 
earth dynamics take months for a single run. Uncertainty theories are promising a fresh approach of 
these issues addressed at length in the Bayesian framework. Given a model, a scenario set should 
explore all qualitative regions of the outcome space, but there are two problems with this. First, the 
number of attractors for the dynamic system may be larger than the number of scenarios. Second, the 
outcome space is computed by the model, so even assuming a small number of well-defined qualitative 
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results, it is not possible to know how many beforehand. I conjecture that using the model to transfer 
uncertainty from parameter space to the outcome space can lead to robust scenario sets.

Decision-making: Because they represent socio-economic systems, with thinking agents, scenarios 
should integrate some sense of rationality with respect to the decision making problem under 
uncertainty. The problem is that non-specificity does not necessary allow to single out just one optimal 
course of action, as we have seen above the question of rationality, coherence and precaution is 
renewed in the non-bayesian framework. Our point of view is that scenario-based analysis can take 
advantage of having only a partial ordering of actions. Because scenario analysis is not prescriptive, it 
is enough to reject dominated actions, and to describe a maximally preferred course of action avoiding 
sure loss.

Applications: The biggest challenge of all is to provide software to help people to take better 
decisions. It is necessary to provide tools for constructing belief functions by fusion of a body of 
elementary opinions (such as possibility statement or comparative probability statements). This must be 
completed with means to analyze uncertainty and communicate it into simplified but adequate terms. 
Finally, there is a need to optimize choices or at least find maximally preferable actions.

Overall, recent mathematical developments on uncertainty analysis translate into a general quantitative 
method for building more plausible and credible scenarios sets. Models are often used in politically 
charged situation, with the goal of providing a cold analysis. In a scenario building methodology, the 
informal steps represent a major point where non-scientific, vested interest parties can capture the 
process. Beliefs functions provide a wider mathematical framework for experts to formalize their 
knowledge and reach consensus.
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