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Abstract

There is a gap in futures research between forecasts, which are assigned precise
probabilities, and scenarios which are not. I propose to bridge it using imprecise
probabilities: Instead of believing in a single probability distribution, beliefs are
represented by a closed convex set of probability distributions, all held equally
credible. This allows to define an upper bound for the probability of any given
future, a kind of degree of possibility. I then propose three formal rules for scenario
analysis: No storyline should be more probable than another; the set of scenarios
should be maximally plausible; it should bracket the largest portion of the possible
futures. For illustration, these tools are used to conduct a mock analysis about the
level of global warming by 2100.

1 Introduction

Both ScenariosandForecastsare detailed descriptions of a system’s future, with the
conventional difference that a set of scenarios is presented without quantifying any
degree of confidence or likelihood, while forecasts are attached to a probability distri-
bution. This distinction is a source of permanent tension in Futures study. Decision-
makers often demand quantification of uncertainty, but consultants in strategic scenario
planning are reluctant to probabilize. Adam Kahane from Shell, as reported in Best [2],
explicits well the problem with probabilities:

We don’t assign probabilities to our scenarios, for several reasons. First,
we intentionally write several scenarios that are more or less equally plau-
sible, so that none is dismissed out of hand. Second, by definition, any
given scenario has only an infinitesimal probability of being right because
so many variations are possible. Third, the reason to be hesitant about all
scenario quantification — not probabilities, economic growth rate or what-
ever — is that there is a very strong tendency for people to grab onto the
numbers and ignore the more important conceptual or structural messages.
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In the same discussion, the well-known analyst Peter Wack concluded more san-
guinely about probabilities:

But I have a strong feeling that it will be poisonous and will contaminate
the logic of scenarios.

To which David Kline, supervisor of the gas forecasting and model development
unit of the California Energy Commission, respectfully disagreed and added:

Trying to bridge just this kind of gap [. . . ] represents one of the most
important intellectual and practical endeavors of our time.

This paper proposes to bridge this gap. It contributes elements for the scenario
planning theory called by Chermack [4]. To qualify this contribution along the dimen-
sions discussed by Ǵasṕar and Nov́aky [7], this paper is distinctly about a technical,
science-based, pluralistic, quantitative and theoretical extension of the methodological
storehouse of futures studies.

These methods elaborate, based on imprecise probabilities, upon Canarelli [3] and
Misani [15] previous propositions to use possibility theory in futures research. They
apply to situations in which forecasting is not possible, that is probabilities are not
available. These situations of deep/epistemic/Knighian uncertainty is typical of the
social systems usually studied in futures research.

The first part reminds a few elements of the mathematical theory of imprecise prob-
abilities [25]. The second discusses three formal rules for selecting plausible futures.
The third part illustrates the proposed methods by presenting results of an hypothetical
analysis about possible global warming futures.

2 Background on imprecise probabilities

2.1 Information with sets of probabilities

A scenario is a pointω in the space of all possible futuresΩ. A scenario setS is a
subset ofΩ. The subsetS typically contains 3 or 4 elements, whileΩ is typically
infinite. Let p denote a probability defined onΩ. As Kahane outlined, the probability
p(S) is usually infinitesimal.

But as [13, 11] pointed out long ago, information about the future of socio-economic
systems can hardly be represented by a single probability distributionp. By nature sce-
narios are called for in situations of deep epistemic uncertainty, where the frequency-
based justification for a probability distribution is not even weak but irrelevant.

Several lines of research synthesized athttp://ippserv.rug.ac.be converge to
suggest to represent information with a set of probability distributions considering that
anyp in C is equally possible [5]. For example, Ellsberg [6] imagined an urn containing
90 balls, 30 of the, red and 60 black or yellow balls, the latter in unknown proportion.
Interested in describing information about the color of a single ball drawn from the urn,
he wrote:

Each subject does know enough about the problem torule outa number of
possible distributions. [. . . ] Heknows(by the terms of the experiment) that

http://ippserv.rug.ac.be
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Figure 1: Points within those triangles represent a probability distribution
(pRed, pBlack, pYellow). Shaded areas within those triangles represent sets of probability
distributions called credal setsC .

there are red balls in the urn; in fact, he knows that exactly 1/3 of the balls
are red. Thus, in his “choice” of a subjective probability distribution over
red, yellow, black — if he wanted such an estimate as a basis for decision
— he is limited to the set of potential distributions between (1/3, 2/3, 0)
and (1/3, 0, 2/3): i.e. to the infinite set(1/3, λ, 2/3−λ), 0≤ λ ≤ 2/3.
Lacking any observations on the number of yellow or black balls, he may
have little or no information indicating that one of the remaining, infinite
set of distributions is more “likely”, more worthy of attention than any
other.

This set will be denotedC hereafter, because it is the set of credible probability
distributions. We also assume thatC is closed (the border is included in the set), and
convex for mathematical simplicity. In addition to Ellsberg objective interpretation, the
subjective interpretation is that the decision-maker believing inC should not accept a
gamble if there is at least one probabilityp∈ C that makes its expected payoff negative.

2.2 How to define sets of probabilities

To illustrate the nature ofC , let us elaborate graphically on Ellsberg’s urn, whereΩ =
{Red,Black,Yellow}. Any triple (pRed, pBlack, pYellow) can be represented as a point
in a triangle, the summits of this triangle corresponding to (1,0,0), (0,1,0) and (0,0,1).
GeometricallyC can be represented as a shaded area inside that triangle. Putting for
example Red on the top summit, Black left and Yellow right, consider the lineup of
differentC defined Figure 1:

The first, leftmost triangle with a single dot at the top summit represents the infor-
mation that the urn is comprised of all “red” balls: the color of the ball that will be
drawn from the urn is known with certainty.

The second triangle with a dot in the middle represents an urn of known compo-
sition, having as many balls of each color. In this case there are objective reasons to
represent the color of the draw with a probability distribution.

The third triangle, whereC is a horizontal segment, represents Ellsberg’s situation
where the subject only knows that one third of balls are red, but the proportion of black
and yellow is unknown.

We will now read the line of triangles starting from the other end, right side. The
rightmost triangle Figure 1 represents an urn about which we know only that it contains
no Yellow balls. This illustrates the important class of constraint-based methods to
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defineC . Simply rule out fromΩ impossible futures, to retain a subsetV ⊂ Ω of
all equally possible futures. ThenC can be simply taken as the set of all probability
distributions with supportV.

Constraint-based methods sort futures in two crisp possibility/impossibility cate-
gories. This extreme manicheism is relaxed with possibility theory. Classically, the set
V of equally and totally possible futures can be identified with its indicator function
πV : Ω → {0,1}, defined byπV(ω) = 1 if and only ifω ∈V. Possibility theory Zadeh
[28] makesV a fuzzy set, by identifying it with a functionπ : Ω → [0,1] that can take
all the intermediate values between 0 and 1.

This possibility distributionπ is normalized so that its maximum is 1. This is
closely related to earlier ideas by [20], who would interpret 1−π(ω) as a subjective
degree of surprise to be experienced ifω occurs.

The setC can be defined as the set of probabilities bounded above in the following
way:

C = {p|∀S⊂Ω, p(S)≤ sup
ω∈S

π(ω)} (1)

This gives the key to the penultimate triangle. On the face of it, it represent an urn
containing “no more than 70 percent Black balls and no more than 60 percentYellow
balls”. Formally, this is the possibility distributionπ = (1,0.7,0.6).

Moving back to the ante-penultimate (fifth) triangle, the probability set there rep-
resents the information “the urn do contains balls of all three colors, biased a little
towardRedand againstYellow”. The fourth triangle add to this information that, we
know there are more Black balls than Yellow balls in the urn. This rules out the points
corresponding to probabilities such thatp(Yellow) > p(Black). In this way, the sixth,
fifth and fourth triangles together illustrate the idea that giving more and more infor-
mation is the same as restrictingC . Knowing permits, as Ellsberg wrote, to rule out a
number of distributions.

To define formally these more complicated shapes ofC , denotep(S) the upper
probability of a scenario set, also called its plausibility:

p(S) = max
p∈C

p(S) (2)

The ante-penultimate triangle Figure 1 can be represented in two ways. One is by
defining upper and lower probabilities for eachω. The other is called Dempster-Shafer
theory, which controlsp using a probability distributionmdefined on subsets ofΩ, and
then definesp(S) = ∑m(E) for all E ⊂ Ω such thatS∩E 6=�. In the fourth triangle,
C can be defined with linear constraints. In the third triangle,C is defined by giving its
summits.

While there are many methods to defineC , not all are equally convenient. Pending
the development of software to deal with belief networks and other imprecise prob-
ability formalisms, possibility theory seems today the best available tool to quantify
uncertainty about scenarios, see for example Young [27]. This is why this paper will,
after discussing rules and principles at the more general level of probability sets, use
possibility theory to present the illustrative example.
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2.3 Interpretation and motivation.

The problem we are interested in represents a situation of one-way communication
from an analyst to a decision-maker. The analyst knows a lot of detailed information
(represented byC ), but he has limited bandwidth to transmit to the decision-maker.
How should he pickS to best control the loss of information?

Formally, I take (Ω, C ) as given, and discuss how to determineS. The goal is not
to argue for a normatively best method, but to offer a set of sensible and practical rules
to help justify the choice of specific scenarios.

From a classical signal theory point of view, one would seek to minimize the un-
avoidable information loss occurring in the communication. The difficulty is that im-
precise probabilities explicitly recognize that ignorance (and therefore information) is
not unidimensional [23].

Consider for example the classical Entropy definition of information. [12] re-
marked that a good measure the information content ofC is Aggregate Uncertainty,
defined as the maximum of the entropy reached by probability distributionsp ∈ C .
Denoting|S| denotes the number of elements ofS:

H(C ) = max
p∈C

−
|S|

∑
i=1

pi log2 pi (3)

Using our lineup of Ellsberg’s urns, it is easy to show that this measure does not
capture everything. Changing from the first to the second triangle increases the Aggre-
gate Uncertainty since it goes from zero (for a full information) to log23 (for equiprob-
ability among three alternatives). But changing from the second to the third triangle
does not increaseH since it is already at its maximum. Yet the largerC , the less
available information about the urn’s composition.

This is because Aggregate Uncertainty is only related to the position ofC , it mea-
sures how closep can be to the center. It does not inform about the shape or the size
of C . No single number can summarize both the size and the position of a geometrical
figure at the same time. This intuitively explains why it would be difficult to deter-
mine S by simply minimizing information loss using a single real-valued measure of
uncertainty.

What I propose instead is a toolbox of mathematical principles to complement the
many existing informal techniques of Scenario analysis.

3 Principles

In this section, I discuss to how determine a bundle of plausible futuresS in a situation
when forecasting is not possible, when information too scarce to determine a credible
probability distribution. In other terms,C is large.

Three rules are proposed: plausible futures should be all equally valid, the bundle
S should be plausible, and it should describe a wide range of possible futures. The
number of futures inS, denoted hereafter|S| is not fixed, it can varies between 2 to 4
or more. These three rules together define a lexicographic order, allowing to recognize
a goodS from a bad one. They are presented the most important first.
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3.1 No scenario more probable than another

Because all probabilities inC are equally possible, one can only say that a futureω1 is
more probable thanω2 if and only if p(ω1) > p(ω2) for all p in C .

With this definition of the ‘more probable than’, it is not always possible to say that
either of two futures is more probable than the other. For example, in Ellsberg’s urn no
color is more probable than any other. One can not conclude about whether there are
more or less yellow balls than red balls. Only if one knew in addition that there were
at least 31 yellow balls, then yellow would be more probable than red.

This notion of incomparability (dropping the completeness axiom) is the key dif-
ference between decision-making with imprecise probabilities and non-expected util-
ity theories that came before it. This is crucial for scenario-making, because it gives a
mathematical meaning to the basic idea that in a bundle of plausible futures no scenario
should be dismissed out of hand as less probable than another. I take as principle one
that according toC , no future inSshould be more probable than any other.

Remark that if equiprobability (that is, the middle of the triangle) is in the interior
of C , then no element ofS is more probable than another1. This suggest a way to
operationalize the principle:

Rule 1 (No preference)Choose S such that equiprobability on S belongs to the inte-
rior of C .

WhenS is presented without information about the relative likelihood of the dif-
ferent scenarios, a Bayesian analyst is likely to use a so-called uninformative, that is
uniform, probability distribution. The advantage of this method is that at least the
Bayesian analyst is not led into using an unreasonable probability distribution, where
unreasonable means ruled out by the analysis that led toC .

An analyst using the imprecise probabilities would use a set of probability distri-
butions onS: the subsetM of all p∈ C those support isS. For him Rule 1 says thatS
maximizes aggregate uncertainty of theM it induces. The other formulation is simpler,
though.

3.2 Maximizing plausibility

The second principle focuses on getting the most likely scenarios on board. To this
end, I propose to maximize the upper probability of a subsetS⊂ Ω, defined as the
maximum ofp(S) for all p in C by Equation 2.

Rule 2 (Maximum plausibility) Choose S to maximizep(S).

This principle needs more discussion, it is related to the various ways of defining
(Ω, C ). In practice, it connects with the question of whether to include a Business-as-
Usual scenario.

Oftentimes, having a business-as-usual scenario is not desirable because it would
become an ‘official future’ exclusive point of focus, thus defeating the very purpose of

1The converse is false in general, consider for example an Ellsberg urn with 20 red balls and 70 black or
yellow balls.
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Figure 2: How to choose plausible futures (dots) given an imprecise probability distri-
bution (lines): choose only points above theπ = 1/n possibility level, wheren is the
number of futures; include a maximally possible future and choose points as apart as
possible to maximize the range of the variable of interestJ.

scenario analysis. In this case using constraint-based methods to defineC helps since
all possible futures are equally and totally plausible. In this situation the first principle
bans impossible futures fromS, so maximum plausibility is automatically satisfied.
With constraints-based methods, the second principle is moot.

But having a clear business-as-usual scenario may be desirable. Demonstrating
knowledge of conventional assumptions helps to establish the credibility of the analyst
(who may be an outsider consultant), for example. Then (Ω, C ) should be set up in a
way that there is only oneω∗ such thatp({ω∗}) = 1. It is then necessary and sufficient
to includeω∗ in S to maximize the plausibility of the scenario set. This route will be
illustrated in the second part of this paper, using possibility theory to defineC .

3.3 Maximizing contrast

The third criteria for a good set of plausible futures is that it should be well contrasted,
so that it represents the diversity of possible futures. Consider a variable of interest
J(ω), interpreted as a performance criteria for the system being analyzed. For business
futuresJ may be profits, for public policyJ may be social welfare, for environmental
economicsJ may be the pollution level.

For any bundle, I propose to adopt the range[infω∈SJ(ω) , maxω∈SJ(ω)] as an in-
dicator of diversity that should be maximized:

Rule 3 (Diversity) Choose S to maximize the range of the variable of interest.

This principle is somewhat ambiguous, since it is not always possible to say that an
interval is larger than another (both may be of the same size). But that ambiguity has
not been a problem in the pilot study presented next. This is because, while no structure
is assumed onΩ in theory, in practice a future corresponds to an-uple(x1, . . . ,xn), each
argumentxi being a numerical parameter. AndJ is monotonous in each parameter.

In this practical case, this rule lead to choose two extremes, one ‘low’ future that
has all the parameters minimizingJ, the other maximizing it. This rule however is
subordinated to the first principle of no preference: the plausibilityp({ω}) of these ex-
treme futures should be greater than 1/|S|. So while these are extreme, their plausibility
remains at significant levels.

Combining the three rules together, this theoretical study of scenario-making sug-
gests practical formal approaches to define plausible futures as illustrated Figure 2:
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If symmetry between futures is desired, use constraint-based methods to rule out
unrealistic futures. Define a primary performance variableJ, and pick two realistic
futures that make it extremal as the leftmost panel illustrates.

If a Business-as-usual storyline is warranted, use a possibility functionπ(ω) that
bounds the upper probability of futures to represent the information. Then build a
set of three plausible futures as the second panel illustrates. The least surprising has
possibility level 1, the two other have possibility level 1/3 and correspond to low and
high future performance.

The third panel illustrates how to choose four futures using a trapezoidal mem-
bership function. In this case the extreme scenarios can be chosen at possibility level
0.25.

The fourth panel illustrates dissonance between different schools of thought: there
are two different triangles that represent two different but internally consistent points
of view about the future. Evidence theory [21] is a natural framework to manipulateC
in this case. Dissonance is another reason not to have a business-as-usual scenario.

4 Illustration: an hypothetical application to global warm-
ing scenarios

4.1 Another ‘scenarios versus forecasts’ controversy

The Intergovernmental Panel on Climate Change [9] recently elaborated long-term
greenhouse gases emissions scenarios, in part to drive global ocean-atmosphere gen-
eral circulation models, and ultimately to assess the urgency of action to prevent the
risk of climatic change.

Using these scenarios led the IPCC to report a range of global warming over the
next century from 1.4 to 5.8◦C, without being able to report any likelihood considera-
tions. This turned out to be controversial, as it dramatically revised the top-range value
which was previously 3.5◦C. Yet some combinations of values which lead to high
emissions, such as high per capita income growth and high population growth, ap-
pear less likely than other combinations. The debates then fell into usual controversy
between the makers and the users of scenarios:

• [19], as well as [18] argued that the absence of any probability assignment would
lead to confusion, as users select arbitrary scenarios or assume equiprobability.
As a remedy, Reilly et al. estimated that the 90% confidence limits were 1.1 to
4.5◦C, while [26] found 1.7 to 4.9◦C for the same 1990 to 2100 warming.

• [8] and [1] took the opposite side by arguing that good scientific arguments pre-
clude determining ‘probabilities’ or the likelihood that future events will occur.
They explained why it was the unanimous view of the IPCC report lead authors
that no method of assigning probabilities to a 100-year climate forecast was suf-
ficiently widely accepted and documented to pass the review process. They un-
derlined the difficulty of assigning reliable probabilities to socioeconomic trends
in the latter half of the 21st century, and the difficulty of obtaining consensus
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range for quantiles like climate sensitivity, and the possibility of a nonlinear
geophysical response.

The method described in this paper could be applied to solve this controversy. It
would require an in-depth analysis of the determinants of greenhouse gases emissions
in the different areas of the world, coupled with a synthesis of scientific information
about global warming mechanism. One would then be able to derive a good (Ω, C ) and
proceed to derive convincing possibility levels for future global warming.

Since this paper is focused on how to derive a set of plausible future, I only describe
a pilot study to illustrate how a deeper exercise could play out. For a more substan-
tive empirical study ofC , see Kriegler and Held [14] recent and independent climate
projections for the 21st century using random sets.

The variable of interest here is global warming in year 2100 denoted∆T2100 in
degree Celsius. Two parameters (n = 2) describe the futures. Parameter[CO2]2100 is
the global atmospheric concentration of CO2 in 2100, measured in parts per million
in volume (ppmv). Parameter∆T2×CO2 is climate sensitivity, that is the warming that
would occur in the long run if the atmospheric concentration of CO2 was stabilized
at twice the preindustrial concentration level (two times 275 ppmv approximately).
Because it takes a long time to realize this long-term equilibrium, I assumed that the
variable of interest is determined as follows:

∆T2100=
[CO2]2100−275

275
× ∆T2×CO2

2
(4)

Admittedly this is the crudest model of global warming. Results will be sensitive
to the gross assumption that half of the long term warming effect is realized instanta-
neously. Numerical results should be taken with no more confidence than the data and
the model warrants, that is none at all. This analysis is done solely to demonstrate the
value of using imprecise probability-based methods.

4.2 Defining a credal set

The contour plot Figure 3 illustrates the joint possibilityπ([CO2]2100,∆T2×CO2) deter-
mining C . The horizontal axis represents levels of atmospheric CO2 concentrations in
2100. The vertical axis represents the climate sensitivity. The figure shows contour
lines of the possibility function. For example, the possibility that (concentration will
be between 660 and 840 parts per million AND climate sensitivity between 1.6 and
3.5) is greater than 0.6.

In a predictive model, one might assume that if climate sensitivity turns out on the
very high side, then serious actions will be taken to reduce pollution. This pilot study,
however, is interested the hypothetical global warming that would occur if nothing was
done to prevent it. This is why it was assumed the two variables do not interact: the
possibility is the minimum of the possibilitiesπ([CO2]2100) andπ(∆T2×CO2). Contour
lines Figure 3 are rectangles, it is only due to numerical approximations that the angles
do not look sharply right.

This leaves to explain how the possibility level of each variable was determined. I
used a different method for each:
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Figure 3: Contour lines of a possibility function.
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Figure 4: Set of three possible futures. The plausibility is maximal because the least
surprising scenario is part of the set. The other two points give Low and High levels of
global warming. But no scenario is more probable than another, the uniform probability
(1/3, 1/3, 1/3) is not ruled out.

The possibility distribution of climate sensitivity was determined using data from Mor-
gan and Keith [16]. This dataset collects the subjective probability distribution of six-
teen leading world experts on climate sensitivity. The experts’ opinions were fusioned
using the method described in Smets [22].

The possibility of future CO2 concentration level was derived using [10] theory of
possibilistic histograms applied to the IPCC SRES database by [17], and then convert-
ing global cumulative carbon emissions over the century to atmospheric concentration
with a linear model.

There are other methods than fusioning experts judgments and combining model
results. In a more realistic exercise, one would presumably not use frequency informa-
tion from integrated assessment models, but rather work with more than two parameters
to be able to use specific information from disciplinary fields.
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Low Middle High
CO2 concentration in 2100, ppmv 618 709 944
Climate sensitivity at 2×CO2, ◦C 1.43 2.85 3.95
Global Warming in 2100,◦C 0.9 2.3 4.8
Possibility 0.34 1 0.34

Table 1: The set of three possible futures in the pilot study. Numeric values are purely
illustrative.

4.3 Applying the proposed rules of Prospective

Figure 4 illustrates how the set of three possible futures was determined. The two
rectangles in the figure show the contour lines at the 0.34 and 0.95 possibility levels.

Following the first rule, I picked all futures at a possibility level strictly above
1/3, that is inside the 0.34 contour line. Following to the second rule, I picked the
least surprising future as the one with possibility 1, located inside the 0.95 possibility
contour.

The third rule suggest to pick the two extreme scenarios that maximize and min-
imize global warming. To visualize this, the figure shows the iso-warming curves:
branches of hyperbolas since Equation 4 is a product. Larger values of the parame-
ters represent a larger global warming in 2100, so in this family of curves warming
increase when moving in the north-east direction. Clearly, this family of curves is ori-
ented so that the top right and the bottom left corners of theπ ≥ 0.34 rectangle realize
the extreme values.

5 Concluding remarks

Table 1 summarizes the results. This method is comparable to Forecasting since, as
van der Heijden [24, p. 105] remarked, it is efficient in reducing rich information into
a simple form in which it can be passed on easily for operational purpose. However, it
is also comparable to scenarios because no plausible future is more probable than any
other.

This paper proposes to bridge the gap between forecasts, which are probabilized,
and scenarios which are not, by using set of probabilities as the fundamental tool
to represent information. Such sets can be defined using possibility distributions or
constraint-based methods, depending on the desirability to produce a Business-as-usual
scenario. I offer three formal rules to build sets of possible futures: no scenario should
be more probable than another, the set should be maximally plausible, and it should
describe a maximal range for the variable of interest. These rules have been illustrated
with an hypothetical study of global warming by the end of the next century.

In conclusion, I would compare the techniques developed here with the rules of
Linear Perspective in painting and drawing: imprecise probabilities are a technical tool
that can contribute to the science part of scenario analysis.
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