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Abstract

This paper examines the fusion of conflicting and
not independent expert opinion in the Transfer-
able Belief Model. A hierarchical fusion procedure
based on the partition of experts into schools of
thought is introduced, justified by the sociology
of science concepts of epistemic communities and
competing theories. Within groups, consonant be-
liefs are aggregated using the cautious conjunction
operator, to pool together distinct streams of evi-
dence without assuming that experts are indepen-
dent. Across groups, the non-interactive disjunc-
tion is used, assuming that when several scientific
theories compete, they can not be all true at the
same time, but at least one will remain. This pro-
cedure balances points of view better than averag-
ing: the number of experts holding a view is not
essential.

This approach is illustrated with a 16 expert
real-world dataset on climate sensitivity obtained
in 1995. Climate sensitivity is a key parameter
to assess the severity of the global warming issue.
Comparing our findings with recent results suggests
that the plausibility that sensitivity is small (below
1.5C) has decreased since 1995, while the plausibil-
ity that it is above 4.5C remains high.
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Résumé:

Ce texte propose examine la fusion des opinions
d’experts en situation de controverse scientifique, à
l’aide du Modèle des Croyances Transférables.

Parmi les procédures qui combinent les experts
symmétriquement, nous constatons que lorsque les
croyances sont bayésiennes (une modélisation clas-
sique s’appuyant sur les probabilités), l’opérateur
de disjonction non-interactif donne de meilleurs
résultats que les autres (conjonction prudente, la
conjonction non-interactive, règle de Dempster).

Puis nous proposons une procédure de fusion
hiérarchique. En premier lieu, une partition des
experts en écoles de pensée est réalisée à l’aide des
méthodes de sociologie des sciences. Puis les croy-
ances sont aggrégées à l’intérieur des groupes avec
l’opérateur de conjonction prudente: on suppose
que tous les experts sont fiables, mais pas qu’ils con-
stituent des sources d’information indépendantes
entre elles. Enfin les groupes sont combinés entre
eux par l’opérateur de disjonction non-interactive:
on suppose qu’au moins l’une des écoles de pensée
s’imposera, sans dire laquelle. Cette procédure of-
fre un meilleur équilibre des points de vue que
la simple moyenne, en particulier elle ne pondère
pas les opinions par le nombre d’experts qui y
souscrivent.

La méthode est illustrée avec un jeu de données
de 1995 obtenu en interrogeant 16 experts à propos
de la sensibilité climatique (le paramètre clé ex-
primant la gravité du problème du réchauffement
global). La comparaison de nos résultats avec la
littérature récente montre que la plausiblité que ce
paramètre soit relativement faible (moins que 1.5C)
a diminué depuis 1995, alors que la plausibilité qu’il
soit au delà de 4.5C n’a pas décru.
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1 Introduction

Is there a single all-purpose aggregation method
for expert opinions ? According to Ouchi [2004],
the answer is negative. Indeed, there are at least
three different ways to represent mathematically
an expert opinion. One is probabilistic risk anal-
ysis [Cooke and Goossens, 1999]. Another ap-
proach is to use the fuzzy numbers theory to com-
bine opinions represented as possibility distribu-
tions [Sandri et al., 1995]. We are interested here
in a third approach: Dempster-Shafer theory of ev-
idence [Shafer, 1990].

We will use a variant of the theory of evidence
named the Transferable Belief Model, and more
specifically examine new operators for information
fusion recently proposed by Denœux [2008]. We
study the applicability of these operators for the
aggregation of expert opinion, using a real-world
dataset from Morgan and Keith [1995].

This dataset illustrates four challenges for math-
ematical aggregation methods. First, it cannot be
assumed that opinions are, statistically speaking,
independent: that would overestimate the precision
of the actual information in the field. Second, there
is complete contradiction among experts: aggrega-
tion methods that take somehow the intersection of
the opinions can not work when the intersection is
empty. Third, the disagreement between experts is
not a balanced opposition, but rather a dissent mi-
nority situation. Some aggregation methods, like
averaging, give more weight to views held by a
larger number of experts, but this is arguably un-
balanced because scientific theories should be eval-
uated only on their own merits, not by the num-
ber of proponents. And fourth, there is no proxy
available to calibrate the reliability of experts, so
we can’t assume that some experts are less reliable
than others.

Section 2 describes the mathematical theory
for information fusion in the Transferable Belief
Model. It defines three ways to combine opin-
ions, namely the non-interactive conjunction, non-
interactive disjunction and the cautious conjunc-
tion. Section 3 discusses theoretically these op-
erators, along with the well known averaging and
Dempster’s rules.

We argue that none of these ways to combine
expert opinions adequately addresses the four chal-
lenges defined above. To this end, we propose a

hierarchical method for the fusion of expert opin-
ion. Experts are not combined symmetrically, but
grouped into schools of thought. Within groups,
beliefs are combined using the cautious conjunction
rule, whereas across groups the non-interactive dis-
junction is used.

These approaches are numerically applied and
compared in Section 4. The data used in this
study represents the opinion of 16 experts on cli-
mate sensitivity, a key parameter of the climate
change issue. We examine which fusion method
works best, showing that the answer is not the same
for Bayesian beliefs and consonant beliefs. The dis-
cussion Section 5 analyzes sensitivity of the results,
comparing them with the more recent literature,
and points to existing social science concepts that
could be used with the proposed hierarchical ap-
proach. Section 6 concludes.

2 Operators of the Transfer-
able Belief Model

2.1 Basic Belief Assignments

The Transferable Belief Model is an elaboration of
the Dempster-Shafer mathematical theory of evi-
dence [Dempster, 1967, Shafer, 1976], a theory that
represents and combines uncertain beliefs. This
section briefly reminds the parts of this model that
are relevant for expert aggregation. The reader
may refer to Denœux [2006], Smets [2000] for a
more complete exposition including the mathemat-
ical demonstrations.

As usual, let us denote by Ω a frame of refer-
ence, that is, a set of mutually exclusive states of
the world. This paper assumes a finite number of
states of the world. Classical probability theory
represents uncertainty by allocating a unit mass of
belief among states of the world, that is a function
p : Ω → [0, 1] such that

∑
ω∈Ω p(ω) = 1.

Dempster-Shafer theory of evidence represents
uncertainty by allocating the unit mass of belief
among subsets of the frame of reference Ω. For-
mally, let 2Ω denote the power set of Ω, that is the
set of all its subsets. Elements of 2Ω will be denoted
with upper case letters such as A ⊆ Ω or X ⊆ Ω.
The empty subset will be denoted ∅. A basic belief
assignment (BBA) is a function m : 2Ω → [0, 1]
such that:
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∑
A⊆Ω

m(A) = 1 (1)

The mass m(A) is the portion of the total belief
supporting A which do not support more precisely
any specific subset of A. Any subset A ⊂ Ω such
that m(A) > 0 is called a focal set of m.

As a classical example, consider a drawing from
an urn containing white, black, and red marbles
(Ω = {white,black, red}). Knowing only that there
is 1/3 of white marbles would lead to the basic
belief assignment defined as: m({white}) = 1/3,
m({black, red}) = 2/3. This is not the same as
drawing from an urn known to have 1/3 of each
color, which would be represented with the ba-
sic belief assignment defined as: m({white}) =
m({black) = m({red}) = 1/3.

For any subset A ⊆ Ω, the BBA that represents
the certain belief that the state of the world is in A
is the indicator function 1A : 2Ω → [0, 1] defined
by: {

1A(A) = 1
1A(X) = 0 if X 6= A

(2)

The basic belief assignment 1Ω is called the vac-
uous BBA. It allocates all belief to Ω itself, and
represents the absence of information. Following
up the urn example above, the vacuous BBA is
defined by m({white,black, red}) = 1, m(X) =
0 otherwise. Again, this is not the same as the
equidistribution. We will call m(Ω) the weight of
ignorance.

In Shafer’s original theory, in addition to Equa-
tion 1, a BBA must verify the axiom m(∅) = 0. The
Transferable Belief Model drops this constraint: it
allows non-zero belief mass to the empty set, and
considers that renormalization, defined as follows,
should not be applied systematically. Renormaliz-
ing a BBA m means replacing it by the BBA m∗

defined as:{
m∗(∅) = 0
m∗(A) = m(A)

1−m(∅) if A 6= ∅
(3)

Smets [1992] discusses two reasons for using un-
normalized BBAs: incompleteness and conflict. In-
completeness means that m(∅) measures the belief
that something out of Ω happens. For example, if
Ω = {Head,Tail} models a coin toss, then m(∅) is

the extend of the belief that the coin could fall side-
ways, break or otherwise disappear. In what fol-
lows, we assume that the states of the world are col-
lectively exhaustive, disregarding incompleteness.

Therefore in this context, m(∅) relates to con-
flict only. The number m(∅), called weight of con-
flict, is a measure of internal contradiction which
arises when forming belief from information sources
pointing in different directions. The extreme case
1∅ represents being confounded by completely con-
tradictory information sources. As opposed to the
vacuous BBA 1Ω which can be adopted when one
has no information at all, the complete contradic-
tion BBA 1∅ represents a situation of confusion
arising from too much information inconsistency.

2.2 Non-interactive fusion operators

The two basic combination rules of the transferable
belief model will be denoted A and B. They provide
a way to compute the “intersection” or the “union”
of two experts’ opinions.

Before turning to the formal definitions, these
rules will be illustrated on a special case: the fusion
of two experts holding certain beliefs. Expert 1
views that the state of the world is in A ⊆ Ω, and
expert 2 views that the state of the world is in
B ⊆ Ω. Their beliefs are represented, respectively,
by 1A and 1B .

To start with B, consider what the result of the
fusion should be when one thinks that either expert
1 or expert 2 is a reliable information source. In this
case, one is led to believe that the state of the world
is in A or B, that is in A ∪B. The B combination
rule is precisely such that 1A B 1B = 1A∪B . It
is called the non-interactive disjunction rule. This
operator can be qualified as a “gullible” rule, which
means it accepts all that it is told.

The non-interactive conjunction rule A is meant
to be used when one thinks that both expert 1 and
expert 2 are reliable information sources. Appar-
ently, there are two cases. When A ∩ B is non-
empty, the fusion of the two opinions should be
the belief that the state of the world is in A ∩ B.
When the experts have no common ground, that is
A ∩ B = ∅, then we have a contradiction problem.
However, in the transferable belief model this is not
a problem, this state of affairs is represented with
1∅. So actually in both cases, the operator should
be such that 1A A 1B = 1A∩B . This operator can
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be qualified as a “consensus” rule, to mean that all
parties accept the result.

For reasons that will become apparent with
Equation 8, we define below these two combina-
tion rules with slightly more general functions than
BBAs. Let use the Greek letter µ to denote a real-
valued subset function µ : 2Ω → < which verifies
Equation 1, but may or may not be a basic belief
assignment, that is, take values in [0,1] or not. The
non-interactive conjunction of µ1 and µ2 is defined
as the subset function µ1Aµ2 : 2Ω → < such that,
for any subset X:

(µ1 A µ2)(X) =
∑
A⊆Ω
B⊆Ω

A∩B=X

µ1(A)× µ2(B) (4)

In the same way, B is defined by:

(µ1 B µ2)(X) =
∑
A⊆Ω
B⊆Ω

A∪B=X

µ1(A)× µ2(B) (5)

These operators are commutative, associative
and if µ1 and µ2 are two BBAs then the result
is also a BBA. These properties allow to treat the
experts symmetrically when combining their opin-
ions. Vacuous beliefs 1Ω is an absorbing element
for disjunction and a neutral element for conjunc-
tion. Conversely, contradiction 1∅ is absorbing for
conjunction and neutral for disjunction.

As an example, consider Ω = {a, b}, and the
BBA m defined by m({a}) = m({b}) = 1/2.
Then (m A m)({a}) = (m A m)({b}) = 1/4, and
(m A m)(∅) = 1/2. Such a large weight of con-
flict in the result may seem surprising. One way
out is to systematically renormalize, as described
by Equation 3. The non-interactive conjunction A
followed by normalization is known as Dempster’s
combination rule, usually denoted ⊕ in the litera-
ture :

m1 ⊕m2 = (m1 Am2)
∗ (6)

However, in some situations the surprising re-
sult is the correct one, and renormalization should
not be used. It depends on what is being mod-
eled. Consider for example a setting in which two
scientists simultaneously replicate a large number

of fair coin tosses. Both conclude that p(Head) =
p(Tail) = 1/2 in the long run. But if the exper-
iments are independent, then results of the coin
tosses were in conflict half the time. This suggests
that the non-interactive conjunction A is relevant
to combine information sources only when some
kind of independence relation can be assumed be-
tween information sources. It justifies why this op-
erator is called non-interactive.

2.3 Factorization and cautious con-
junction

The non-interactive combination rules should not
be used to combine experts who share pieces of ev-
idence. To perform information fusion in this kind
of situations, Denœux [2008] introduced an opera-
tor called cautious conjunction. To define it math-
ematically, it is necessary to introduce first the fac-
torization of BBAs.

For any proper subset A ⊂ Ω and any real num-
ber s, we denote As the function µ : 2Ω → < such
that:


µ(Ω) = e−s

µ(A) = 1− e−s

µ(X) = 0 if X 6= A and X 6= Ω
(7)

The letter s stands for “Shafer’s weight of evi-
dence”. This value was previously denoted w by
Shafer [1976, Chapter 5]. But the recent litera-
ture [Denœux, 2006] uses the letter w to denote
the “weight of evidence” defined by w = e−s.

Regarding the interpretation of As, when s ≥ 0
the function As is a BBA, but when s < 0 it is not,
so As can generally not be interpreted as a state of
belief. Smets [1995] has shown that for any BBA
m such that m(Ω) > 0 there is a unique function
s : 2Ω \ Ω → < such that:

m = A
A⊂Ω

As(A) (8)

Any BBA m such that m(Ω) > 0 is the non-
interactive conjunction of elementary pieces of the
form As(A). The weights of evidence function s may
take negative values, in which case the BBA is not
separable according to Shafer [1976], who did not
consider negative weights of evidence.
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This unique factorization theorem allows us to
come back to the interpretation of As. It can be
seen as the change in one’s beliefs realized when in-
tegrating with weight s a piece of evidence stating
that the state of the world is in A. Positive in-
finity for s represents a perfectly convincing proof
that the state of the world is in A. This remains
excluded in the above definition, for reasons dis-
cussed further below. Negative weights s < 0 have
an algebraic justification similar to that of nega-
tive numbers: considering A with weight s exactly
counterbalances considering A with weight −s, to
produce vacuous beliefs 1Ω. It is more difficult to
achieve an intuitive understanding of negative in-
formation. Smets [1995] suggested that As, for a
negative value of s, represents a ‘good reason not
to believe’ that the state of the world is in A.

Let us denote |X| the number of elements (cardi-
nality) of a subset X ⊆ Ω. The weights can be com-
puted as follows, introducing the function q called
the commonality function :

q(X) = (m A 1X)(X) =
∑

A⊇X

m(A) (9)

For any X ⊂ Ω, note that q(X) ≥ m(Ω), there-
fore m(Ω) > 0 implies q(X) > 0, so the logarithm
is well defined in the following:

s(X) =
∑

A⊇X

(−1)|X|−|A| ln
(
q(A)

)
(10)

Using equations 4 and 8, along with commutativ-
ity and associativity, it is straightforward to verify
that, if two BBA m1 and m2 admit corresponding
weight functions s1 and s2, their non-interactive
conjunction can be computed simply by adding
those:

m1 Am2 = A
A⊂Ω

As1(A)+s2(A) (11)

This property allows us to clarify the intuition
behind the A operator. The non-interactive con-
junction adds up distinct pieces of evidence. For ex-
ample, when combining two experts who point ex-
actly in the same direction A with the same weight
s, the result is As

A As = A2s. Once again, it is
correct to argue that a stream of evidence pointing
out in the same direction leads to stronger beliefs
only when they are distinct.

To combine experts that share evidence, Denœux
[2006, 2008] defined the cautious conjunction oper-
ator, denoted by C. It combines any two BBA such
that m1(Ω) > 0 and m2(Ω) > 0 by taking the max-
imum of their weight functions as follows:

m1 Cm2 = A
A⊂Ω

Amax(s1(A) , s2(A)) (12)

It can be shown that if m1 and m2 are BBAs,
then m1Cm2 is also a BBA (this is immediate only
when m1 and m2 are separable). This combination
rule C is also commutative and associative, it treats
experts symmetrically. It is also idempotent, that is
mCm = m, and distributes over the noninteractive
rule (m1 Am2) C (m1 Am3) = m1 A (m2 Cm3).

Distributivity has an interesting interpretation
related to the fusion of beliefs. Consider two ex-
perts in the following scenario. Expert 1’s be-
lief results from the noninteractive conjunction of
two pieces of evidence, m1 = As

A Bt. Expert
2 shares one piece of evidence with expert 1, and
has an independent piece, so that m2 = As

A Cu.
Then distributivity implies that in the fusion, the
shared evidence As is not counted twice m1Cm2 =
As
A (Bt

C Cu).

2.4 Discounting Beliefs

A BBA m that verifies m(Ω) = 0 cannot be factor-
ized as described above. Equation 4 implies that
(µ1 A µ2)(Ω) = µ1(Ω) × µ2(Ω), and we defined As

in Equation 7 such that As(Ω) > 0 always holds.
Therefore the right hand side of Equation 8 cannot
be BBA such that m(Ω) = 0.

Various reasons justify to take basic beliefs as-
signments such that m(Ω) = 0 with a grain of salt:

• No information source is 100% reliable, espe-
cially human ones.

• Many philosophers consider that fundamen-
tally, scientific knowledge can never be abso-
lute and definitive. On the contrary, it is nec-
essarily based on a possibly large but finite
number of human observations, and is always
open to revision in front of new experimental
evidence.

• The elicitation of expert’s opinions, for exam-
ple by asking them probability density func-
tions, is necessarily coarse. Experts who allo-
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cated no significant probability weight to ex-
treme outcomes might have agreed that there
was a very small possibility.

Shafer [1976, p. 255] proposed a simple way to
add doubt to a basic belief assignment, called dis-
counting. Let r be a number in [0, 1] called a re-
liability factor. Discounting the BBA m means re-
placing it by the BBA defined as:

discount(m, r) = rm + (1− r)1Ω. (13)

Discounting allows beliefs to be factorized, and
therefore combined using the cautious operator.
Admittedly, discounting expert beliefs is deliber-
ately blurring the data, a practice to be considered
with extreme care if used at all. However, the rea-
sons above justify using reliability factors, provided
they are close enough to unity. The theoretical lit-
erature suggests that the fusion operators can be
extended by continuity to deal with m(Ω) = 0, and
the sensitivity analysis will allow to check that re-
sults don’t change much when r varies from 0.99 to
0.9999.

To sum up, that section defined a mathemati-
cal object used to represent an expert’s opinion,
denoted m and called a basic belief assignment
(BBA). Four operators were defined to combine
the opinions of two experts. The cautious conjunc-
tion operator C is meant to be used when experts
share data. Otherwise, the non-interactive dis-
junction B takes the union of expert beliefs, while
non-interactive conjunction A takes their intersec-
tion. Dempster’s rule ⊕ is the renormalized non-
interactive conjunction.

3 Fusion in the Transferable
Belief Model

Having defined the mathematical framework and
the binary fusion operators, we discuss now the
complete procedures involving pooling the opinions
of experts. Experts opinions are typically called for
in situations in which there is not enough statisti-
cal evidence to support precise probabilities. This
motivates our interest in an imprecise probability
theory, such as the Transferable Belief Model, to
model and combine beliefs. But imprecision has
implications along the whole analytical process, not
just the fusion of beliefs.

First, we discuss the implications of imprecision
for the process’ ultimate aim, to facilitate decision
making. In our view, it implies to take a step back
from the standard expected utility-maximization
methodology implicit in probabilistic risk analysis.
Second, we discuss the elicitation of opinions, a nec-
essary step before the fusion, and question the va-
lidity of asking experts for probability density func-
tions when more imprecise communication instru-
ments can be used. Third, we discuss theoretically
alternative ways to fusion beliefs, and fourth, we
introduce a hierarchical approach to set the stage
for the numerical application that will follow.

3.1 Decision Making and Uncer-
tainty Communication

A reason why decision analysis processes involving
the fusion of opinion is important is that when deci-
sions involve different parties and scientific experts
are not unanimous, policymakers will tend to break
the symmetry of the elicitation process by myopi-
cally focusing on the results best supporting their
interest. Another risk is that the press and other
media outlets tend to paint issues in black and
wite and to present two sides on everything. Or-
ganizations seeking a balanced point of view would
overemphasize the most extreme positions in the
group, even when they are actually a minority not
representative of the experts’ general opinion.

Smets [2005] offers a way to find a balanced point
of view for decision making in the Transferable Be-
lief Model. He points out that any BBA m such
that m(∅) 6= 1 defines a probability function BetP ,
that he calls the pignistic probability function of m,
by:

BetP (ω) =
1

1−m(∅)
∑
X3ω

m(X)
|X|

(14)

Smets then argues that when beliefs are de-
scribed by m, a decision-maker should choose ac-
tions that maximize the expected utility, where ex-
pectation is computed using the probability distri-
bution BetP . However, other decision making rules
can be used. For example, Cobb and Shenoy [2006]
point out that the justification of BetP is an ar-
gument of symmetry, which fundamentally contra-
dicts the semantics of ignorance underlying the use
of BBAs. These authors suggest instead to use an-
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other way to transform a BBA m into a probability
distribution PlP , by renormalizing the plausibility
of singletons:

PlP (ω) =
1
K

∑
A3ω

m(A) (15)

where K is chosen so that
∑

ω∈Ω PlP (ω) = 1.
But offering a single precise probability distri-

bution from which expected utility maximization
can provide an optimal answer to all policy issues
is problematic. This position has been put for-
ward by Morgan and Keith [1995], who argued that
while expert aggregation can help decision making
by presenting a simpler picture of the multiplicity
of opinions on a given subject, in many cases pre-
senting an aggregate probability is an oversimplifi-
cation and it is better to leave with the decision-
maker the task of the combining the judgment of
all experts. Keith [1996] discusses in more detail
why combining experts is rarely appropriate, and
suggests instead to use alternative analysis frame-
work such as seeking robust adaptive strategies or
using scenario analysis to bound the problem.

Such an alternative framework could be pro-
vided by imprecise probabilities, where one uses
sets of probabilities as basic uncertainty represen-
tation. Mathematically, it is straightforward to
view a BBA as implicitly defining upper and lower
bounds on admissible probabilities, using Equa-
tions 17 and 16. But there are significant semantic
and technical difficulties with this view. The com-
bination operators of the Transferable Belief Model,
especially Dempster’s rule, do not correspond di-
rectly with the combination operators of the im-
precise probability theory.

Today there is no consensus in the scientific liter-
ature on precautionary decision making. The core
agreement is that when beliefs are Bayesian, the
standard approach is expected utility maximiza-
tion. But in the more general case several rules
have been proposed. Some reject what has been
historically the first axiom in the field: that there
is a total ordering between decisions. This leads to
an analysis that recommends a set of maximal or
E-admissible actions [Troffaes, 2007]. The set can
be large, and results do not prescribe further which
action should be selected in that set. These incom-
plete ordering approaches provide less guidance for
decision-making than other rules. While this can

be seen as a fatal limitation, rejecting the total or-
dering axiom follows the intuition that when there
is a multiplicity of opinions, it is not possible to
determine precisely and objectively an optimal an-
swer to the policy issue.

In any case, communication of the results ob-
tained by information fusion in the Transferable
Belief Model does not have to put forward a sin-
gle probability distribution. Instead, it can involve
the measures of belief and plausibility associated
with a BBA m. The value of the belief function
for an event X ⊆ Ω, denoted bel(X), measures the
strength of conviction that X must happen. The
value of the plausibility function, denoted pl(X),
relates to the strength of conviction that X could
happen. With the special case bel(∅) = pl(∅) = 0,
these functions are defined when X 6= ∅ as :

bel(X) =
∑

A⊆X
A 6=∅

m(A) (16)

pl(X) =
∑
A⊆Ω

A∩X 6= ∅

m(A) (17)

An intuitive interpretation of the theory of evi-
dence sees m(X) as a mass of belief that can flow
to any subset of X. In this view, bel(X) represents
the minimal amount of belief that is constrained to
stay within X, while q(X) represents the amount of
belief that can flow to every point of X, and pl(X)
the maximal amount of belief that could flow into
X.

These functions can be used with the ‘calibrated
vocabulary’ approach to communicate qualitatively
about uncertainty. For example, if the analytical
result is bel(X) > 0.90, it could be said that X is
correct with very high confidence. If pl(X) < 0.33,
it could be said that X is unlikely. No calibrated
uncertainty vocabulary (probabilistic or otherwise)
is universally accepted, and presumably it would
depend upon the readers’ language and culture.

Calibrated vocabularies have often been defined
using a probability scale [IPCC, 2005, Weiss, 2003,
Wallsten et al., 1986]. Such scales have to be
revised, if one wishes to account for the multi-
dimensionality of uncertainty: a basic belief assign-
ment m allows to express levels of belief, plausibil-
ity, and contradiction.

7



3.2 Elicitation: Bayesian or Conso-
nant BBAs?

We now turn to the methods for expert elicition,
upstream of the information fusion itself. Ap-
proaches in experts elicitation include:

1. Expert’s opinion elicitation in the tradition
of risk assessment: asking the experts about
probabilities, obtaining subjective probability
density functions.

2. Expert’s knowledge elicitation in the tradition
of fuzzy logic: collecting opinions in natural
language, modeling them with fuzzy numbers
or possibility distributions [Zadeh, 1978].

3. Qualitative methods: asking the experts to
make hypothetical choices. Opinions can then
be deducted from elicited preferences, using
the assumption that choices follow rationally
from beliefs. This approach was applied to be-
lief functions by Yaghlane et al. [2006]

Formally, information fusion in the Transferable
Belief Model can deal with these three approaches.
We will focus on the first two, because qualitative
methods, which could potentially be used to elicit
directly BBAs, are also less well developed. There
is a natural embedding of probability distributions
in the set of BBAs and a natural embedding of
possibility functions in the set of BBAs.

Any probability function p : Ω → [0, 1] naturally
defines a BBA m by:{

m({ω}) = p(ω) for any ω ∈ Ω
m(X) = 0 if |X| 6= 1

(18)

A BBA m that naturally corresponds with a
probability p by the above equation is said to be
Bayesian. A BBA is Bayesian when its only focal
sets are singletons.

By definition, a normalized possibility distri-
bution is a function π : Ω → [0, 1] such that
maxω∈Ω π(ω) = 1. Given such π, a BBA m nat-
urally associated with π can be computed via its
commonality function as follows:

q(A) = min
ω∈A

π(ω) (19)

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B) (20)

In the numerical application (section 4 and fol-
lowing), we will use a dataset where opinions are
given as probabilities, using Equation 18 to trans-
form them into Bayesian belief functions when
needed.

We will also explore information fusion when be-
liefs are more imprecise. This is necessary theoret-
ically because probabilities are a very special kind
of basic belief assignments, in which all belief mass
is supported by singletons, and the information fu-
sion methods need to be tested in a more general
case.

There is also a potential practical interest to ex-
plore information fusion without assuming that be-
liefs are Bayesian. While in this specific dataset, as
in many other, opinions are specified with probabil-
ities, other elicitation exercises might use different
approaches. These include providing judgements
using natural language, probability bounds or pos-
sibility estimates. We argued that presenting a sin-
gle probability distribution was not justified when
statistical data is insufficient, even considering the
whole pool of experts. This data scarcity argument
is even stronger at the individual level, since each
expert holds only a fraction of the data.

In order to compare better the fusion of Bayesian
and non-Bayesian beliefs, we will re-use the same
dataset and transform each expert’s elicited distri-
bution into a corresponding consonant belief func-
tion. This transformation problem was already dis-
cussed by Sandri et al. [1995] in a possibilistic con-
text, which is not surprising given that most of the
existing available datasets are probabilistic.

There are many ways to transform a probability
p into a BBA m, starting with the natural injection
defined Equation 18. But if we relax the assump-
tion that beliefs in the mind of experts are nec-
essarily Bayesian, a principle of least commitment
(or maximal uncertainty) can be used to compute
which m an expert could have held, knowing that
it has answered the probability distribution p. The
principle is applied as follows. Given p, consider
the set M of belief functions consistent with p, for
some definition of consistency. Then select m as
the member of M which has the most uncertainty
in it, having defined an uncertainty-related order
relation that admits a single maximum in M .

Dubois et al. [2008] suggested to select for M the
set of all BBAs m such that BetP = p, where BetP
is defined by Equation 14. This set is never empty
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because it contains the BBA naturally correspond-
ing to p itself. This amounts to argue that even
if the elicitation procedure does not explicitly use
bets, experts, when asked to provide probabilities,
actually provided pignistic probabilities (BetP de-
fined Equation 14), that is, probabilities they would
use if they were asked to bet.

Following the least commitment principle, one
then computes the least committed belief functions
compatible with these pignistic probabilities. The
uncertainty order relation is defined as follows: for
any two BBAs m1 and m2 with respective com-
monality function q1 and q2, if q1(A) ≥ q2(A) for
all A ⊂ Ω, we write that m1 vq m2.

Dubois et al. [2008] states that there is an unique
maximum in M with respect to vq, which can be
computed as follows. Order the states of the world
from most to least probable, that is p(ωn1) > · · · >
p(ωn|Ω|). Consider the sets Ak = {ωn1 , . . . , ωnk

}
and assign to Ak the belief mass:

m(Ak) = |A| ×
(
p(ωnk

)− p(ωnk+1)
)

(21)

with the convention that pn|Ω|+1 = 0. The pro-
cedure is illustrated on Figure 3.2, which demon-
strates graphically that m is indeed a basic belief
assignment, it adds up to unity. Note that the fo-
cal sets Ak are nested, that is Ak ⊂ Ak+1 for all k.
In this case, it is said that m is consonant. It can
be shown that the result m is naturally associated
with a possibility distribution (via Equation 20).

For each expert i, we have a method to transform
the Bayesian belief function (corresponding to the
elicited probability distribution pi) into a conso-
nant belief function (corresponding to a possibility
distribution that we will denote πi).

3.3 Symmetric Fusion of Expert
Opinions

Having discussed opinion elicitation and decision
making, we now turn to the fusion of opinions. The
literature offers many rules to combine beliefs, see
Smets [2007] for a survey. This section examines
systematically ten ways to combine opinions sym-
metrically: five operators defined above, each used
with or without discounting.

We will explore two discounting options. The
high reliability factor, r = 0.999, amounts to prac-

p2

p3

p4

p5
p6

mH83<L

mH83, 4<L

mH82, 3, 4<L
mH82, 3, 4, 5<L

mH82, 3, 4, 5, 6<L

Figure 1: From Bayesian to consonant beliefs. Top,
Bayesian beliefs (from expert 1 in the dataset). As-
suming that the width of each rectangle is 1, and its
height is proportional to the probability, the area
of the rectangle denoted p3 is p3, and the sum of
all rectangles’ area is 1. Bottom, the corresponding
consonant belief function. The area of the rectan-
gle denoted m({3, 4}) is the belief mass going to
the focal set {3, 4}. The slices are cut horizontally,
but the outline remains the same. The total area
remains 1, meaning that m is a BBA.
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tically no discounting at all, but is technically nec-
essary to ensure that beliefs can be factorized and
combined using the cautious operator. A medium
reliability factor, r = 0.8, can be justified as in 2.4.
The five operators are: the non-interactive con-
junction and disjunction, the cautious conjunction,
Dempster’s combination rule, and averaging.

Theoretical analysis allows us to disregard seven
of the ten different ways to fusion opinions, because
they can be expected to give mathematically de-
generate or otherwise uninteresting results in the
context of expert opinion fusion.

Consider first averaging, also called the linear
opinion pool. It is mathematically equivalent to
discount the opinions before averaging, or to dis-
count after averaging. But there is no reason to
discount the average opinion, once it is computed.
That only adds unjustified imprecision to the re-
sult. This explains why we will only check averag-
ing with r = .999 in the next section. More pre-
cisely, denoting mi the BBA associated with expert
i and denoting n the number of experts, we will
compute :

maverage =
1
n

∑
i=1...n

discount(mi, 0.999) (22)

On the contrary, using Dempster’s combina-
tion rule ⊕ without discounting can give counter-
intuitive results [Zadeh, 1979]. Consider, for ex-
ample, three states of the world, Ω = {A,B, C},
and the problem of combining Bayesian beliefs
corresponding to the two probability distributions
p1 and p2, defined respectively by p1(A) = 0.9,
p1(B) = 0, p1(C) = 0.1, and p2(A) = 0, p2(B) =
0.9, p2(C) = 0.1. The result according to Demp-
ster’s rule has a belief weight 0.85 to the state of
the world C, which is paradoxical since both infor-
mation sources agree that this is the least proba-
ble outcome. In the same example, if opinions are
taken with a reliability factor r = 0.8 before com-
bination, the weight going to state of the world C
is only 0.105, which is much more intuitive. This
is why we will only examine Dempster’s rule with
the medium reliability factor:

mdDempster =
⊕

i=1...n

discount(mi, 0.8) (23)

Turning now to the non interactive disjunction
B, this operator tends to produce very uninforma-
tive beliefs. Adding imprecision to the input by
discounting leads even faster to a vacuous result
1Ω. This goes against the purpose of information
fusion, so we will only consider the fusion with al-
most no discount:

mniDisjunction = B
i=1...n

discount(mi, 0.999) (24)

The non interactive conjunction operator A and
the cautious operator C produce a trivial result
when the information sources conflict completely.
In this case, the fusion falls into pure contradiction
1∅. As with Dempster’s rule, discounting could be
used to decrease conflict before the fusion. This
would technically allow to recover more informative
results. But discounting is not justified for these
operators, since in the transferable belief model 1∅
is accepted as a theoretically correct result. Worse,
the non-interactive conjunction finds conflict when
combining a Bayesian belief with itself. As seen
previously, when combining the fifty-fifty probabil-
ity with itself, the belief mass of ∅ is 0.5.

The introduction enumerated four challenges
for mathematical aggregation methods: non-
independence, complete contradiction, minority
views, and discounting. Contradiction between ex-
perts rules out conjunction operators, but is not a
problem for the remaining three approaches. None
of these, however, completely answers the other
challenges. Dempster’s rule needs discounting, but
there is little evidence to determine reliability fac-
tors. Contrary to the cautious conjunction, Demp-
ster’s rule and the non-interactive operators assume
that experts are independent. This can lead to ar-
tificially over-precise results, by counting the same
pieces of evidence more than once.

With averaging and Dempster’s rule, the weight
of an opinion increases with the number of experts
holding it. This can be seen as a problem, as scien-
tific arguments should be evaluated on their own
merits, not by argumentum ad populum (Latin:
“appeal to the people”). It is only at the social
decision-making stage that the quality and number
of people behind each view should matter. Group-
think and bandwagon effects are known dangers
when pooling opinions. Thus, all other things being
equal, a fusion method that gives equal attention to

10



the minority and the majority views is preferable.

3.4 A Hierarchical Approach

The difficulties of symmetric fusion methods to ag-
gregate conflicting beliefs have led researchers to
suggest adaptive fusion rules [Schubert, 1995, Ay-
oun and Smets, 2001, Destercke et al., 2006]. The
general idea is to merge conjunctively subgroups
of coherent sources, before disjunctively merging
the different results. We propose a hierarchical fu-
sion procedure based on this idea. This procedure
aims to be relevant when science is not yet stabi-
lized, and the notion of ‘competing theories’ can
be used. Sociology of science suggests that at some
moments in the progress of science, in front of a big
unexplained problem, scientists tend to group into
schools of thought, which correspond to alterna-
tive candidate theories [Kuhn, 1962]. Within each
group, experts share an explanation of the way the
world works. But only time can tell which theory
will emerge, and only one will be adopted in the
end.

This suggests to use different operators across
and within groups. Across groups, we will use a
non-interactive disjunction operator, assuming that
at least one theory, but not all theories, is a reliable
information source. This deals with the challenge
of representing equally minority views because all
theories are treated equally, regardless of the num-
ber of experts in the group.

Within groups, beliefs will be combined using a
cautious conjunction operator. This assumes that
experts are all reliable but not independent infor-
mation sources. Discounting is needed if the beliefs
verify mi(Ω) = 0, but this is only a technical oper-
ation; as the reliability factor can be as close to 1 as
desired, we will use r = 0.999. This method deals
with contradiction as far as the degree of conflict
remains low between experts within groups. De-
noting G1, . . . , GN the groups of experts, we will
compute:

mHierarchical = B
k=1...N

C
i∈Gk

discount(mi, 0.999)

(25)
In that equation, using the B operator is tanta-

mount to assuming that schools of thought are non-
interactive, that is somewhat independent. This

assumption could be discussed, but the disjunc-
tive combination rule corresponding to the cautious
conjunction has been published by Denœux [2008]
too recently to be examined here.

At this point, we have defined four ways to
combine beliefs: the simple linear opinion pool
(Equation 22), the discounted Dempster’s combi-
nation rule (eq. 23), the non-interactive disjunction
(eq. 24), and a hierarchical disjunctive-cautious fu-
sion based on the notion of competing theories
(eq. 25). These four methods will be applied both
to the elicited Bayesian beliefs (eq. 18), and to the
consonant beliefs (eq. 21). This defines theoreti-
cally eight distinct ways to perform opinion fusion
in the transferable belief model. The next section
examines how they perform on a real-world dataset.

4 Application to Climate Sen-
sitivity

4.1 Data used

Climate sensitivity is a proxy for the severity of
the climate change problem. It is denoted ∆T2×,
and defined as the equilibrium global mean sur-
face temperature change following a doubling of
atmospheric CO2 concentration, compared to pre-
industrial levels [Randall et al., 2007]. Over the last
two decades, climate sensitivity has become one of
the main communication anchors between the sci-
entists and policymakers to quantify the seriousness
of the climate change issue, as discussed by van der
Sluijs [1997], Boa [2003].

The value of this parameter is not known pre-
cisely. For a long time, the [1.5◦C, 4.5◦C] inter-
val has been regarded as the canonical uncertainty
range for ∆T2× [National Research Council, 1979].
Yet knowing better climate sensitivity is critical for
climate policy. According to current trends, hu-
mankind is well on track to double the CO2 con-
centration in the Earth’s atmosphere, not to men-
tion other greenhouse gases. IPCC [2001a] esti-
mated that 2◦C of global warming raises serious
concerns such as risks to many unique and threat-
ened ecosystems (for example coral reefs or the arc-
tic ice sheet), plus a large increase in the frequency
and magnitude of extreme climate events (like heat-
waves, droughts and storms).

If climate sensitivity were around 1.5◦C, one
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could argue that doubling the CO2 concentration
would not lead immediately to a dangerous inter-
ference with the climate system. But if climate
sensitivity were at the upper end of the canonical
uncertainty range, 4.5◦C, then doubling the CO2

concentration would certainly be a very dangerous
interference with the climate system.

Morgan and Keith [1995] conducted structured
interviews using expert elicitation methods drawn
from decision analysis with 16 leading U.S. cli-
mate scientists. The authors obtained quantitative,
probabilistic judgments about a number of key cli-
mate variables, including the climate sensitivity pa-
rameter.

This dataset received a significant interest in the
climate change literature, as in the late nineties
there were very few other estimates for this parame-
ter’s probability distribution. For example Webster
and Sokolov [2000, 4.1] derived a climate sensitiv-
ity probability distribution by taking the median
(across the 16 experts) of each of the fractiles (0.05,
0.25, 0.5, 0.75, 0.95), and using the median fractile
values to fit a beta distribution. According to this
distribution, p(∆T2× ≤ 1.5◦C) = 0.24, p(1.5◦C ≤
∆T2× ≤ 4.5◦C) = 0.67, p(∆T2× ≥ 4.5◦C) = 0.09.

But Reichert and Keith [2001] raised theoreti-
cal issues against combining these opinions into a
single judgment on climate sensitivity like Webster
and Sokolov [2000] did. The 16 experts are not
independent, they are part of a research commu-
nity regularly sharing data, models and ideas. And
yet opinions on climate sensitivity are widely dif-
ferent in qualitative terms. The authors confirmed
that there is an interest in finding an aggregation
technique where the combined probability distribu-
tion does not necessarily narrow as the number of
experts increases, and which is more robust with
respect to extreme experts judgments than previ-
ously published techniques.

4.2 Implementation

The Transferable Belief Model was implemented
in Mathematica version 6 using matrix calculus as
described by Smets [2002]. The whole notebook
file used to create the published figures and ta-
bles is available as an electronic supplement to this
manuscript.

In the dataset, no probability is allocated to cli-
mate sensitivity lower than −6◦C, or larger than

12◦C. For the sake of numerical tractability, this
range was subdivided in seven ranges:

Ω = {ω1, . . . , ω7}
= {[−6, 0], [0, 1.5], [1.5, 2.5], [2.5, 3.5], [3.5, 4.5], [4.5, 6], [6, 12]}

Each expert’s probability distribution on Ω was
computed from the elicited probability density
function Pi:

pi(ω1) = Pi

(
−6 ≤ ∆T2×CO2

< 0
)

pi(ω2) = Pi

(
0 ≤ ∆T2×CO2

< 1.5
)

. . .

The procedure described in Section 3.2 (see
Equation 21 and Figure 3.2) was used to trans-
form the Bayesian beliefs into consonant beliefs.
We computed an implicit possibility distribution
πi associated with each expert’s probability distri-
bution pi. Figure 2 represents pi and πi for the 16
experts.

Four qualitatively different groups of distribu-
tions can be identified. The widest distributions
come from experts 2, 3 and 6, they allow a positive
probability both to cooling and to climate sensitiv-
ity well above 6◦C. Distributions from experts 4, 7,
8, 9 do not give weight to cooling, but have an up-
per bound above 8◦C. Experts {1,10–16} disallow
extreme cases, the width of the range supporting
their probability distributions is between 4.2 and
5.5◦C. Expert’s 5 probability distribution lies in the
range ω2 = [0◦C, 1.5◦C].

The 0.80 reliability factor used for Dempster’s
rule is arbitrary. Discounting is also necessary to
compute the cautious conjunction, as all experts
except {2,3,6} give a zero probability to some out-
comes. We used a reliability factor 0.999. Since
results will be shown only to 2 digits, that is pre-
sumably close enough to 1, an assumption that will
be tested in the sensitivity analysis.

We used the four qualitative groups outlined
above for the hierarchical approach: G1 = {2, 3, 6},
G2 = {4, 7, 8, 9}, G3 = {1, 10, 11, 12, 13, 14, 15, 16},
G4 = {5}. Better ways to group experts together
will be discussed in section 5.3, but this heuristic is
sufficient to illustrate the method.

We further assumed that within a school of
thought, all experts are reliable but not inde-
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13 14 15 16

Figure 2: The probability (grey histograms) and implicit possibility (dotted lines) for the 16 experts in
[Morgan and Keith, 1995]. The vertical axis goes from 0 to 1. The horizontal axis discretizes the [-6◦C,
12◦C] climate sensitivity range into seven intervals using a non-uniform subdivision at -6, 0, 1.5, 2.5,
3.5, 4.5, 6 and 12◦C. Four qualitatively different groups of distributions can be seen: Experts 2,3,6 allow
cooling, 4,7,8,9 allow high outcomes but no cooling, 1,10–16 disallow extreme cases, and 5 is concentrated
on [0◦C,1◦C]. Data are given numerically in Table 6.
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pendent information sources. Their beliefs were
combined using a cautious conjunction operator:
mGk

= Ci∈Gk
mi. The second stage combined the

four groups together using the non-interactive dis-
junction operator.

4.3 Results

Figure 3 and Table 1 present the results, in two
different ways. The figure shows the results ob-
tained by combining Bayesian beliefs in the left col-
umn, and those obtained with consonant beliefs in
the right column. Correspondingly, the table is di-
vided in a top half showing the fusion of Bayesian
beliefs, whereas the bottom half is devoted to the
consonant beliefs. In each half, we compare the re-
sults obtained using the four ways to combine opin-
ions: averaging (Equation 22), discounted Demp-
ster’s rule (Equation 23), non-interactive disjunc-
tion (Equation 24) and the hierarchical approach
(Equation 25). Numbers are shown with two sig-
nificant digits.

On each plot in Figure 3, the vertical axis goes
from 0 to 1, and horizontally the numbers (from
1 to 7) denote the states of the world ω1 to ω7.
The legend at the bottom defines these states of
the world in terms of climate sensitivity. Finally,
there are three series of points on each plot. The
top one is labelled pl, while the middle one is la-
belled p and the bottom bel. They display, respec-
tively, the plausibility pl(ωi), the pignistic prob-
ability BetP (ωi), and the belief bel(ωi). Labels
are sometimes superposed. The lines are drawn
for readability, but it does not mean that we plot
continuous densities.

Showing these three functions only on the ωi does
not represent completely the results, except when
the result is Bayesian. Since there are 7 states of the
world, a general BBA m is defined with 27 = 128
numbers. As an example of what the full results
look like, the basic belief assignment resulting from
the hierarchical fusion of the consonant beliefs is
completely tabulated in Table 5 (see Annex) with
5 decimals. It has 18 focal sets.

In Table 1, each line describes aspects of the BBA
obtained using a different fusion method. Lines
1 to 4 show the combination of Bayesian beliefs,
lines 5 to 8 of consonant beliefs. There are five
columns. The first column shows the degree of con-
flict m(∅), while the second column shows m(Ω).
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Figure 3: Results of the fusion, using different op-
erators. Left column using Bayesian beliefs, right
column using consonant beliefs.
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Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C bel–
pl

In range bel–pl Above 4.5◦C bel–
pl

maverage 0. 0.00 0.23–0.24 0.65–0.65 0.11–0.11
mdDempster 0. 0. 0.04–0.04 0.96–0.96 0.–0.
mniDisjunction 0. 0.08 0.–1. 0.–1. 0.–0.86
mHierarchical 0. 0.00 0.79–1. 0.–0.16 0.–0.06

Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C bel–
pl

In range bel–pl Above 4.5◦C bel–
pl

maverage 0. 0.08 0.07–0.69 0.27–0.93 0.–0.45
mdDempster 0. 0. 0.02–0.03 0.97–0.98 0.–0.
mniDisjunction 0. 0.99 0.–1. 0.–1. 0.–1.
mHierarchical 0. 0.18 0.–1. 0.–1. 0.–0.61

Table 1: The fusion of expert opinion on climate sensitivity. Top table using Bayesian beliefs, bottom
table using consonant beliefs.

Heuristically, smaller numbers in these columns are
better, since they correspond to intuitively more
interesting or informative results. The last three
columns show the values of the belief and plausi-
bility functions. They refer to a coarsened frame
of reference: states of the world have been grouped
into three policy relevant cases. The less worry-
ing case is {ω1, ω2}, that is sensitivity below 1.5◦C.
The historical canonical range is represented by
{ω3, ω4, ω5}. The worst case groups together out-
comes for which climate sensitivity is above 4.5◦C,
that is {ω6, ω7}.

We now discuss each operator successively. Re-
sults obtained by averaging are shown in Figure 3
on the top row. Top left, the three curves bel, p and
pl are superposed: when all beliefs are Bayesian,
the average is also Bayesian. The top right graphic
represents the average of consonant beliefs. The
plausibility and belief curves are now very differ-
ent. For a decision-maker only focused on pig-
nistic probabilities (curve labelled p), the left and
right results would seem very close. But from an
evidence theory perspective, the left plot under-
represents scientific controversies and the need for
precautionary decision-making.

Consider for example what the results say about
∆T2× < 1.5. As shown in Table 1, averaging
in the Bayesian case leads to the conclusion that
bel({ω1, ω2}) = 0.23 and pl({ω1, ω2}) = 0.24 (the
small difference between belief and plausibility lev-
els is explained by the reliability factor 0.999 we
introduced.). Yet the bottom half of the table

shows that averaging in the consonant case leads
to bel({ω1, ω2}) = 0.07 and pl({ω1, ω2}) = 0.7.

These results are qualitatively different. The
former could be stated as ‘There is a low confi-
dence that ∆T2× < 1.5’, to mean a probability
around 0.2. But the latter result could be stated
as ‘∆T2× < 1.5◦C has a low degree of belief but a
significant level of plausibility’. Such a more impre-
cise statement describes more accurately the state
of scientific controversies.

The graphics in the second row reveal that
Dempster’s rule with discounting produces very fo-
cused beliefs around ω3. This rule considerably re-
duces the plausibility of states of the world that
are outside the canonical range. The issues with
discounting, shared evidence and the bandwagon
effect discussed in section 3.3 suggest that much of
this precision is unwarranted.

Results with the non-interactive disjunction are
shown on the third row. With consonant beliefs,
the result is almost completely uninformative: line
7, column 2 in Table 1 shows indeed that m(Ω) =
0.99. With Bayesian beliefs, the figure shows that
the results are well shaped. In that case, while the
levels of belief are close to zero, the levels of plau-
sibility do have lower values for the extreme cases.
This suggests empirically that the non-interactive
disjunction rule produces degenerate results when
used to combine consonant beliefs, but works better
when combining Bayesian beliefs.

Lastly, let us consider the results of the hierarchi-
cal fusion. In the case of Bayesian beliefs, almost
all the weight goes to ω2, and the plausibility of
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{ω3, ω4, ω5} is only 0.16. This can be explained by
looking at the cautious conjunction within groups
(Table 7 in the annex). At this stage, the degree of
conflict is high, respectively 0.86, 0.86 and 1 within
G1, G2 and G3.

Thus it appears that the hierarchical fusion
method is useless, or at least highly unstable, when
applied to subjective probabilities that are repre-
sented by Bayesian BBA’s. Bayesian BBA’s tend
to be conflicting, and their conjunction leads to a
large mass on the empty set. Thus, groups of mul-
tiple experts tend to eliminate themselves. This is
the opposite issue of averaging, where the majority
got a larger weight than minority opinions.

That contradiction problem does not arise when
combining consonant beliefs: the degree of conflict
within groups is only 0.01, 0.03 and 0.14. The non-
interactive disjunction rule across groups gives a
more balanced image of the opinion pool.

Figure 3 shows that some combinations of oper-
ators and input data produce degenerate results,
while other give more interesting BBAs. Designing
a study to formally elicit and aggregate informa-
tion using expert opinion involves several heuristic
choices: which experts to interview, how to elicit
their opinions and how to fusion them. To avoid
degenerate results, one has to balance these choices.

Conjunction operators move the belief masses
‘down’, into smaller focal sets, but too much pre-
cision is a problem given conflicting opinions. Dis-
junction operators move the belief masses ‘up’, to
larger focal sets, but too much generality produces
useless results. To avoid extreme results, a proper
heuristic may be to apply a precision increasing op-
erator (conjunction) to imprecise data (consonant
beliefs), or conversely an imprecision-increasing op-
erator (disjunction) to precise data (Bayesian be-
liefs). Averaging is neutral here.

This may contribute to explain the qualitative
results in Figure 3. For example, when opinions
are represented with Bayesian beliefs, it is interest-
ing to combine them with the non-interactive dis-
junction rule: this operator produces beliefs that
are more imprecise than its inputs. Conversely,
this operator gives the trivial vacuous beliefs when
opinions are represented using consonant beliefs,
because it adds imprecision to a pool of already
imprecise data.

5 Discussion

5.1 Sensitivity Analysis

Tables 2 and 3 show the result of the fusion un-
der alternative operators (also represented in the
annex, figures 5 and 6). First, we examine the sen-
sitivity of the discounted Dempster’s rule to the
reliability factor. Decreasing the reliability factor
means adding doubt to the beliefs to be combined.
This spreads around the belief weights, so the re-
sult becomes less focused compared to the previous
case with r = 0.8. The magnitude of change in the
results can be significant. Consider for example
the ‘below 1.5◦C’ case when combining Bayesian
beliefs. Between r = 0.8 (Table 1, line 2, column
3) and r = 0.5 (Table 2, line 1, column 3), its prob-
ability increases by a factor 4.

The other four lines in Table 2 illustrate the prob-
lem of contradiction. In the non-interactive con-
junction and in the cautious conjunction of all ex-
perts, the degree of conflict m(∅) is very high. We
check that C is less sensitive to conflict than A,
and that adding doubt, either by discounting or by
transforming Bayesian into consonant beliefs, de-
creases conflict. This only confirms the theoretical
reasons why in section 3.3 we disqualified these op-
erators.

Table 3 presents variants of the hierarchical ap-
proach. Using a reliability factor r = 0.99 does
not change the results much compared to the case
with r = 0.999. Adding more doubt to the input
data mechanically increases m(Ω) in the output,
which in turn increases plausibility levels. Moving
to r = 0.9999, the results do not change visibly, as
the display is rounded to 2 digits.

Merging G1 and G2 together allows to check that
results are significantly sensitive to the clustering of
experts: the plausibility of the ‘above 4.5◦C’ case,
with consonant beliefs, drops from 0.61 to 0.15 (Ta-
ble 1, line 7, column 5). Finally, we examined a
hierarchic fusion where the first step is averaging,
rather than the cautious conjunction. The plau-
sibility function levels are generally greater with
averaging, as the extreme cases get more plausible.
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Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C bel–
pl

In range bel–pl Above 4.5◦C bel–
pl

Dempster r=0.5 0. 0.01 0.16–0.17 0.8–0.81 0.03–0.04
cautious 1. 0. 0.–0. 0.–0. 0.–0.
cautious r=0.8 0.96 0.00 0.01–0.02 0.01–0.02 0.00–0.01
niConj. 1. 0. 0.–0. 0.–0. 0.–0.
niConj. r=0.8 1. 0. 0.–0. 0.–0. 0.–0.

Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C bel–
pl

In range bel–pl Above 4.5◦C bel–
pl

Dempster r=0.5 0. 0. 0.06–0.12 0.88–0.94 0.–0.01
cautious 0.95 0. 0.05–0.05 0.–0. 0.–0.
cautious r=0.8 0.71 0. 0.1–0.13 0.16–0.19 0.–0.01
niConj. 1. 0. 0.–0. 0.–0. 0.–0.
niConj. r=0.8 0.87 0. 0.00–0.00 0.13–0.13 0.–0.

Table 2: Sensitivity analysis: the fusion of expert opinions using alternative symmetric operators. Top
half, using Bayesian beliefs; bottom half using the corresponding consonant beliefs.

Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C
bel–pl

In range bel–pl Above 4.5◦C
bel–pl

Hierarchical r=.99 0. 0.01 0.74–1. 0.–0.2 0.–0.08
Hierarchical r=.9999 0. 0.00 0.79–1. 0.–0.16 0.–0.06
Hierarchical 3-way 0. 0.00 1.–1. 0.–0.00 0.–0.00
average within 0. 0.00 0.01–1. 0.–0.96 0.–0.39

Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C
bel–pl

In range bel–pl Above 4.5◦C
bel–pl

Hierarchical r=.99 0. 0.2 0.–1. 0.–1. 0.–0.62
Hierarchical r=.9999 0. 0.18 0.–1. 0.–1. 0.–0.61
Hierarchical 3-way 0. 0.00 0.01–1. 0.–0.99 0.–0.15
average within 0. 0.58 0.–1. 0.–1. 0.–0.95

Table 3: Sensitivity analysis: the fusion of expert opinions using alternative hierarchic procedures. Top
half, using Bayesian beliefs; bottom half using the corresponding consonant beliefs.
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5.2 Existing Results on Climate Sen-
sitivity

In its third assessment published in 2001, the In-
tergovernmental Panel on Climate Change [IPCC,
2001b, Technical Summary F.3] stated that “cli-
mate sensitivity is likely to be in the range of 1.5
to 4.5◦C. This estimate is unchanged from the first
IPCC Assessment Report in 1990”. This estimate
can be traced back even earlier [National Research
Council, 1979]. The [1.5, 4.5◦C] was not offered as
a 90% confidence interval, but as a “likely” range.
The word “likely” had a formally defined meaning,
it was used to indicate a judgmental estimate of
confidence of 66 to 90% chance. Since this report,
several studies have estimated probability density
functions for climate sensitivity based on models
and observations.

Hall et al. [2007] combined a set of 7 such distri-
butions in an imprecise probability framework. The
result, given as upper probability bounds, suggests
that p(∆T2× ≤ 1.5) ≤ 0.10 and p(∆T2× ≥ 4.5) ≤
0.60 (determined graphically from Figure 5 in Hall
et al. [2007]).

Kriegler [2005, section 3.2.3] conducted a deeper
analysis of the combination of these distributions
with imprecise probabilities. Four of the six esti-
mates examined show a 90% confidence interval in
the range between 1.3 and 6.3◦C. In the other two
studies, these ranges are [1.4, 7.7] and [2.2, 9.3].
The author then estimated a prior imprecise distri-
bution based on the literature, and then updated
it using a climate model and observational data for
1870–2002. Updating was done using both Demp-
ster’s rule and the Generalized Bayes Rule, but only
Dempster’s rule produced meaningful results. Ta-
ble 4 summarizes them. For example, the posterior
results suggest that the probability of climate sen-
sitivity being less than 1.5◦C is very small (0.00
meaning less than 1 per thousand). In the poste-
rior, the probability that climate sensitivity falls in
the [1.5, 4.5] range is between 0.53 and 0.99.

According to these results, there is a large possi-
bility that climate sensitivity lies above 4.5◦C. The
relatively high upper bound (10◦C) has been con-
tested by Hegerl et al. [2006, Figure 3], who re-
cently estimated that the 5–95 per cent confidence
range of climate sensitivity was about 1.5–6.2◦C.
Still, this does not refute the idea that the 90% con-
fidence interval has its upper bound above 4.5◦C.

Hegerl et al. [2007, 718–727] offers a comprehen-
sive assessment of the literature on climate sensi-
tivity. In this more recently published Fourth As-
sessment Report, IPCC continues to formulate un-
certainty statement literally, with an explicit corre-
spondence on a probability scale [IPCC, 2005]. The
conclusion is that, in spite of new research, the re-
sult is not changed much since the previous report:
the likely range is [2, 4.5], where “likely” means
a probability between 66 and 90 percent. IPCC
also states that it is “very unlikely” that climate
sensitivity lies below 1.5, meaning a less than 10%
probability.

Andronova et al. [2007, Figure 1.1a] also pub-
lished an historical perspective on climate sensi-
tivity. They conclude that recent studies based
on observations indicate that there is more than a
50% likelihood that ∆T2× lies outside the canonical
range of 1.5◦C to 4.5◦C, with disquietingly large
values not being precluded. They combined the
16 experts opinions in terms of their mean estima-
tion and variance into a single cumulative density
function, under the assumption that each of the 16
estimations is normally distributed, but this was
mostly for historical comparison.

Results presented Table 1 can be compared
to this more recent literature. Only the non-
degenerate cases in lines 1, 3, 5 and 8 need to be
considered. The plausibility that climate sensitiv-
ity lies below 1.5 appears to be low in the recent
literature. But it is high in our results (respectively
1, 0.7 and 1 in lines 3, 5 and 8). In the linear pool-
ing case line 1, the probability is 0.23 which can
also be seen as rather significant. The fusion re-
sults are not in line with the more recent literature
here.

Given that the dataset included one opinion cer-
tain that ∆T2× ≤ 1.5◦C, this discrepancy can
hardly be seen as a mathematical artefact. A more
intuitive explanation is that the scientific consen-
sus has evolved since 1995, to revise downward the
likelihood of that event. The increase in the IPCC
lower bound from 1.5◦C to 2◦C can be taken as a
sign of this change.

Consider now the last column in Table 1, related
to the case in which climate sensitivity lies above
4.5◦C. The recent literature finds that this case is
rather plausible. Lines 3, 5 and 8, this event’s plau-
sibility is respectively 0.88, 0.45 and 0.62. Line 1,
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T2× ∈ [0◦C, 1.5◦C] [1.5◦C, 4.5◦C] [4.5◦C, 10◦C]
†Prior [0, 0.07] [0.31, 0.98] [0.02, 0.62]
†Posterior [0, 0.00] [0.53, 0.99] [0.01, 0.47]
‡Prior [0, 0.08] [0.12, 1.0] [0, 0.80]

Table 4: Probability bounds on climate sensitivity ∆T2×. Source: Top two rows (†) from Kriegler [2005,
table 4.2] and Bottom row (‡) from Kriegler and Held [2005]. The prior summarizes the literature, the
posterior is updated by Dempster’s rule, using the results of a simulation model.

the probability is 0.11. Thus, the fusion results
are in better agreement with the more recent find-
ings here. If the visibility given to the higher than
4.5◦C case has increased in the recent publications,
its subjective weight was already present in experts’
minds back in 1995.

5.3 Remarks on the hierarchical ap-
proach

Clemen and Winkler [1999] dichotomize ways to
summarize the opinion of a variety of experts in
two classes: behavioral approaches and mathemat-
ical methods. In behavioral approaches, also called
interactive expert aggregation methods, experts ex-
change information with each other. In mathemat-
ical approaches, each expert is interviewed sepa-
rately in a first phase, and then opinions are com-
bined afterward according to some algorithmic ag-
gregation method.

Behavioral approaches have many interesting ad-
vantages over algorithmic methods. The group
judgment is more legitimate since it comes from
the experts themselves and collective deliberation
is a natural social process. The way scientific pan-
els such as the Intergovernmental Panel on Climate
Change (IPCC) write their reports is an interac-
tive expert aggregation method. However, behav-
ioral approaches also have drawbacks. Any group
of experts is subject to the social dynamics inherent
in any group of humans. There are known biases
towards conservatism and overconfidence in group-
thinking. More importantly, managing all the in-
teractions between the experts is complicated, time
consuming and thus costly.

Mathematical methods aim at simplifying and
rationalizing the procedure by separating in time
the expert opinion elicitation step from the ag-
gregation step, and performing the later without
the experts. The simplest aggregation method we

have seen is linear pooling, that is averaging. It
works with Bayesian as well as with consonant be-
liefs. As an alternative, we have seen that the non-
interactive disjunction produces meaningful and
non-trivial results, when beliefs are Bayesian. Fi-
nally, we examined a hierarchical approach. Us-
ing consonant beliefs, it gave results comparable
to those obtained with the non-interactive disjunc-
tion.

The main limitations of our work are the follow-
ing. Firstly, when beliefs are Bayesian, the hier-
archical fusion works poorly. This is because, in
that case, the degree of conflict within groups is too
high. Secondly, we used a probability-possibility
transformation, which is an abductive reasoning,
an inference to the best explanation. But had we
used a possibilistic dataset from the start, we would
also have had to use a possibility-probability trans-
formation in order to compare fusion methods in
the Bayesian and the non-Bayesian cases. Taken
together, these two limitations suggest that hierar-
chical fusion as presented here is more appropriate
when beliefs are elicited as possibility distributions.

Thirdly, the hierarchical approach is based on a
partition of experts into a small number of schools
of thought. Contrary to symmetric fusion oper-
ators, it requires to structure the pool of experts.
Thus, it requires to put back some sociology aspects
in a mathematical aggregation framework. While
in this paper we determined the groups from the
elicited probability distribution, social sciences of-
fer much better procedures:

• The network of experts can be analyzed
through publications. Experts who have pub-
lished together have seen the same data, they
are more likely to share evidence. Newman
[2004] shows that bibliometrics can help deter-
mine the patterns of scientific collaborations.

• Expert elicitation techniques involve semi-
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structured interviews. That material is prime
experimental data for social scientists. Work-
ing from transcripts is a classical method to an-
alyze how a group of people is organized. Such
analysis is usually conducted without mathe-
matical tools. There are more formal content
analysis methods, often based on the written
rather than oral production of the subjects.

• The experts themselves know their community.
They can help to discover how it is organized,
and they can validate the results of the socio-
logical analysis.

Note that the expert selection step, in an elic-
itation exercise, has to make sure that no major
point of view is omitted. This shows that socio-
logical considerations on the population of experts
cannot be avoided, even in a mathematically ori-
ented study. When it is clear from the start what
the different schools of thought are, one can select
a single expert to represent each position, and then
pool the opinions symmetrically. Otherwise, it is
only after analyzing the interviews transcripts that
the population of experts can be organized around
a small number of archetypes.

Representing the diversity of viewpoints by a
small numbers of schools of though is admittedly a
strong simplification of complex social reality. But
it is less simplistic than treating all experts sym-
metrically. Finding out the detailed structure of
epistemic communities, and explaining the differ-
ences between theories can be very informative in
itself. Bringing forward that qualitative analysis is
a valuable advantage of the hierarchical approach.

6 Conclusion

This paper compared several procedures to ag-
gregate expert opinion in the Transferable Belief
Model. We considered both Bayesian beliefs and
consonant beliefs. The former correspond naturally
with probabilities, the latter with possibilities. Re-
garding the procedures that combine opinions sym-
metrically, results show that:

• Taking either the non-interactive conjunction
or the cautious conjunction of all opinions pro-
duces degenerate results, indicating only that
experts contradict each other.

• Dempster’s rule of combination, even after
discounting, led to excessively narrow results
(overconfidence).

• Averaging always produces non-degenerate re-
sults, but there are two problems with that
method. First, when beliefs are Bayesian, the
result is Bayesian too. In the Dempster-Shafer
theory of evidence, Bayesian beliefs under-
represent scientific controversies. Second, av-
eraging is essentially a way to allocate more
weight to views held by a larger number of
experts. This is a problem because scientific
theories should be assessed only on their own
merit.

• The non-interactive disjunction rule produces
a degenerate (uninformative) result when be-
liefs are consonant. The intuition is that con-
sonant beliefs are vague to start with, and the
result of the disjunction is more imprecise than
its inputs. The non-interactive disjunction of
Bayesian beliefs represents more appropriately
scientific controversies than their average.

Then a hierarchical fusion procedure was as-
sessed. This procedure is built around a sim-
ple model of experts’ social relations: it divides
them into schools of thought. Social science meth-
ods are available to determine the fine structure
of epistemic communities, and knowing this struc-
ture may be as interesting as knowing an aggregate
opinion. Within each school, beliefs are aggregated
using the cautious conjunction operator. Across
the groups, beliefs are combined using the non-
interactive disjunction rule. Hierarchical fusion in
the Transferable Belief Model offers a solution to
several theoretical problems regarding opinion ag-
gregation:

• It allows to represent the issue of precaution-
ary decision making due to scientific contro-
versies in ways that purely probabilistic meth-
ods are not able to, beyond standard expected
utility maximization.

• Disjunction allows coping with complete con-
tradiction among opinions without falling into
degenerate results or paradoxes. When several
scientific theories compete to explain the same
observations, it should not be assumed that
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both are true at the same time (conjunction),
but that at least one will remain (disjunction).

• Within groups, cautious conjunction does pool
together distinct streams of evidence to make
beliefs firmer. But it is not assumed that opin-
ions are independent: this would overestimate
the precision of actual information.

• Pooling opinions across schools of thoughts,
rather than across individual experts, is ar-
guably a more balanced procedure. Contrary
to averaging, where the number of experts
holding a view is essential, minority views are
equally taken into account in hierarchical fu-
sion.

• This hierarchical fusion procedure uses only a
technical approach to discounting. It applies
the same very high reliability factor to all ex-
perts. This avoids the two issues of discount-
ing: adding lots of doubt to experts opinions,
or saying that some experts are less qualified
than others.

This study was conducted using a real-world
dataset on climate sensitivity, published in 1995.
The fusion of expert opinion was compared to the
more recent stochastic results on climate sensitiv-
ity, some of them based on model simulations. That
comparison suggest that since 1995, the plausibility
that climate sensitivity will remain below 1.5◦C has
decreased. The plausibility that climate sensitivity
is above 4.5◦C was significant in the community’s
opinion in 1995. It remains so today.
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7 Annex: Additional tables
and figures

S m(S)
{2} 0.00014
{2, 3} 0.00765
{2, 4} 0.00340
{2, 3, 4} 0.16386
{1, 2, 3, 4} 0.00663
{2, 4, 5} 0.00114
{2, 3, 4, 5} 0.13432
{1, 2, 3, 4, 5} 0.07212
{2, 3, 4, 6} 0.02748
{1, 2, 3, 4, 6} 0.01334
{2, 3, 4, 5, 6} 0.08973
{1, 2, 3, 4, 5, 6} 0.18316
{2, 3, 4, 7} 0.02128
{2, 3, 4, 5, 7} 0.00624
{2, 3, 4, 6, 7} 0.01364
{1, 2, 3, 4, 6, 7} 0.01063
{2, 3, 4, 5, 6, 7} 0.06289
{1, 2, 3, 4, 5, 6, 7} 0.18234

Table 5: The basic belief assignment resulting
of the hierarchical fusion. Cautious conjunction
within groups, non interactive disjunction across,
consonant beliefs.
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Climate
sensitivity
(◦C)

-6–0 0–1.5 1.5–2.5 2.5–3.5 3.5–4.5 4.5–6 6–12

Expert 1 0. 0.1333 0.5167 0.2333 0.0917 0.025 0.
Expert 2 0.1 0.2 0.175 0.1625 0.0875 0.1179 0.1571
Expert 3 0.1429 0.1203 0.1579 0.2632 0.1667 0.1002 0.049
Expert 4 0. 0.2333 0.2667 0.1429 0.1171 0.14 0.1
Expert 5 0. 1. 0. 0. 0. 0. 0.
Expert 6 0.1217 0.1488 0.1494 0.205 0.1917 0.1333 0.05
Expert 7 0. 0.0909 0.2591 0.375 0.125 0.0786 0.0714
Expert 8 0. 0.1333 0.3667 0.2286 0.127 0.1023 0.0421
Expert 9 0. 0.225 0.275 0.1833 0.1367 0.13 0.05
Expert 10 0. 0.14 0.26 0.4 0.2 0. 0.
Expert 11 0. 0.05 0.35 0.25 0.2 0.15 0.
Expert 12 0. 0.1 0.4 0.275 0.125 0.1 0.
Expert 13 0. 0.375 0.3417 0.2083 0.075 0. 0.
Expert 14 0. 0.0357 0.281 0.3583 0.225 0.1 0.
Expert 15 0. 0.35 0.27 0.2133 0.1167 0.05 0.
Expert 16 0. 0.05 0.375 0.325 0.2 0.05 0.
Climate
sensitivity
(◦C)

-6–0 0–1.5 1.5–2.5 2.5–3.5 3.5–4.5 4.5–6 6–12

Expert 1 0. 0.5167 1. 0.7167 0.3917 0.125 0.
Expert 2 0.6875 1. 0.975 0.95 0.6125 0.7768 0.9339
Expert 3 0.8409 0.7506 0.886 1. 0.9035 0.6499 0.3427
Expert 4 0. 0.9667 1. 0.7857 0.6857 0.7771 0.6
Expert 5 0. 1. 0. 0. 0. 0. 0.
Expert 6 0.7804 0.9005 0.9022 1. 0.9867 0.8384 0.35
Expert 7 0. 0.5136 0.8841 1. 0.6159 0.4643 0.4286
Expert 8 0. 0.6714 1. 0.8619 0.6524 0.5538 0.2526
Expert 9 0. 0.95 1. 0.8667 0.7267 0.7 0.3
Expert 10 0. 0.56 0.86 1. 0.74 0. 0.
Expert 11 0. 0.25 1. 0.9 0.8 0.65 0.
Expert 12 0. 0.5 1. 0.875 0.575 0.5 0.
Expert 13 0. 1. 0.9667 0.7 0.3 0. 0.
Expert 14 0. 0.1786 0.9226 1. 0.8107 0.4357 0.
Expert 15 0. 1. 0.92 0.8067 0.5167 0.25 0.
Expert 16 0. 0.25 1. 0.95 0.7 0.25 0.

Table 6: Top half, the elicited probability distributions, corresponding to histograms in Figure 2. Bottom
half, possibility distributions derived from these, represented as dotted lines in Figure 2
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Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C bel–pl In range bel–pl Above 4.5◦C bel–
pl

2, 3, 6 0.86 0. 0.04–0.04 0.07–0.07 0.03–0.03
4, 7, 8, 9 0.86 0. 0.02–0.02 0.09–0.09 0.02–0.02
1,10, . . . , 16 1. 0. 0.–0. 0.–0. 0.–0.
5 0. 0.00 1.–1. 0.–0.00 0.–0.00

Conflict
m(�)

Ignorance
m(Ω)

Below 1.5◦C bel–pl In range bel–pl Above 4.5◦C bel–
pl

2, 3, 6 0.01 0.14 0.02–0.75 0.24–0.97 0.–0.48
4, 7, 8, 9 0.03 0. 0.–0.44 0.52–0.97 0.–0.26
1,10, . . . , 16 0.14 0. 0.00–0.06 0.81–0.86 0.–0.
5 0. 0.00 1.–1. 0.–0.00 0.–0.00

Table 7: The cautious conjunction within groups of expert opinion on climate sensitivity. Top table
using Bayesian beliefs, bottom table using consonant beliefs. See also Figure 4.
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Figure 4: Results of the hierarchical fusion’s first
stage, the cautious conjunction within each group.
Left column using Bayesian beliefs, right column
using consonant beliefs. See also Table 7.
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Figure 5: Sensitivity analysis, alternative symmet-
ric fusion operators. Left column using Bayesian
beliefs, right column using consonant beliefs.
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Figure 6: Sensitivity analysis, alternative hierar-
chic fusion. Left column using Bayesian beliefs,
right column using consonant beliefs.
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