IPMU'08, June 22-27, 2008, Málaga, Spain

A hierarchical fusion of expert opinion in the Transferable Belief Model (TBM)

Minh Ha-Duong, CNRS, France

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The frame of reference: climate sensitivity

Climate sensitivity $\Delta T_{2\times}$ is: The long term global warming if [CO₂] in the atmosphere doubles Uncertain: 1.5°C to 4.5°C.

Morgan and Keith (1995) obtained probability density functions by interviewing 16 leading U.S. climate scientists.

Experts' uncertainty range subdivided in 7 intervalls to simplify:

$$\Omega = \{\omega_1, \dots, \omega_7\}$$

= {[-6,0], [0, 1.5], [1.5, 2.5], [2.5, 3.5], [3.5, 4.5], [4.5, 6], [6, 12]}

Variety of views: everything possible $\{2,3...\}$, no cooling $\{4...\}$, reasonable middle $\{1...\}$, no problem $\{5\}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fusion issues using experts as information sources

- Dependance \rightarrow Avoid unjustified accuracy
- Complete contradiction \rightarrow Need paraconsistency
- Scientific validity \neq popularity \rightarrow No majority rule

• Calibrating experts is not practical \rightarrow don't !

Categorical beliefs: the indicator function $\mathbf{1}_E$

Belief that the state of the world is in the subset $E = \{\omega_2, \omega_3, \omega_4\}$

of the frame of reference $\Omega = \{\omega_1, \dots, \omega_7\}$ is represented by $m = \mathbf{1}_E$ the indicator function of E:

$$\begin{cases} m(\{\omega_2, \omega_3, \omega_4\}) = m(E) = 1\\ m(A) = 0 & \text{for any other } A \subset \Omega, \ A \neq E \end{cases}$$
(1)

Representing belief with a random subset of Ω

We allocate the unit "mass of belief" among subsets of $\boldsymbol{\Omega}.$

 $m: 2^{\Omega} \rightarrow [0,1]$ is a Basic Belief Assignment iff:

$$\sum_{A \subset \Omega} m(A) = 1 \tag{2}$$

Corner cases included: ignorance and contradiction

Total ignorance, no information Void beliefs represented by $\mathbf{1}_{\Omega}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Total confusion Contradictory beliefs represented by $\mathbf{1}_{\emptyset}$.

Discounting and simple beliefs

Discounting is adding a degree of doubt r to a belief m by mixing it with the void beliefs:

$$\operatorname{disc}(m,r) = (1-r) m + r \mathbf{1}_{\Omega}$$
(3)

Denote A^s the simple belief that "The state of the world is in A, with a degree of confidence s":

$$A^{s} = \operatorname{disc}(\mathbf{1}_{A}, e^{-s}) \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

That is:

$$egin{cases} A^s(A) = 1 - e^{-s} \ A^s(\Omega) = e^{-s} \ A^s(X) = 0 & ext{if } X
eq A ext{ and } X
eq \Omega \end{cases}$$

Conjunction \bigcirc and disjunction \bigcirc of beliefs

When two reliable information sources say one A and the other B, believe in the intersection of opinions (TBM allows $\mathbf{1}_{\emptyset}$):

$$\mathbf{1}_A \odot \mathbf{1}_B = \mathbf{1}_{A \cap B}$$

Generally:

$$(\mu_1 \odot \mu_2)(A) = \sum_{B \cap C = A} \mu_1(B) \mu_2(C)$$
 (5)

When at least one source is reliable, consider the union of opinions.

$$(\mu_1 \odot \mu_2)(A) = \sum_{B \cup C = A} \mu_1(B) \mu_2(C)$$
(6)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Canonical decomposition in simple beliefs

For any *m* such that $m(\Omega) > 0$, there are weights $(s(A))_{A \subseteq \Omega}$ such that:

$$m = \bigotimes_{A \subsetneq \Omega} A^{s(A)} \tag{7}$$

Weights of the \odot conjonction are the sum of weights:

$$m_1 \odot m_2 = \bigotimes_{A \subsetneq \Omega} A^{s_1(A) + s_2(A)}$$
(8)

O Conjunction increases confidence: $A^s \odot A^s = A^{2s}$.

Good for independent information sources, but for experts we want to avoid unjustified accuracy

T. Denœux's cautious combination operator

Whenever...

Expert 1 has confidence $s_1(A)$ that state of the world is in A Expert 2 has confidence $s_2(A)$

...follow the most confident:

$$m_1 \otimes m_2 = \bigotimes_{A \subsetneq \Omega} A^{\max(s_1(A), s_2(A))}$$
(9)

Distributivity: $(m_1 \odot m_3) \odot (m_2 \odot m_3) = (m_1 \odot m_2) \odot m_3$ Interpretation: Expert 1 has beliefs $m_1 \odot m_3$ Expert 2 has beliefs $m_2 \odot m_3$ \bigcirc cautious combination of experts counts evidence m_1 only once. Historical operators: Averaging and Dempster's rule

Averaging is
$$\frac{m_1(X)+m_2(X)}{2}$$

Renormalizing *m* means replacing it with m^* such that $m^*(\emptyset) = 0$ and

$$m^*(X) = rac{m(X)}{1 - m(\emptyset)}$$

Dempster's rule is renormalized conjunction:

$$m_1 \oplus m_2 = (m_1 \odot m_2)^*$$
 (10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

There is no satisfying fusion operator

▲日▼▲□▼▲□▼▲□▼ □ ののの

Discounting decreases contradiction issues, but calibrating experts is not practical.

A hierarchical approach

- 1. Partition experts in schools of thought (adaptative or sociological methods)
- 2. Within groups, 🙆 cautious combination
- 3. Across theories, \bigcirc disjonction

Using the climate experts dataset:

$m_A =$	$m_2 \otimes m_3 \otimes m_6$	Everything possible
$m_B =$	$m_4 \otimes m_7 \otimes m_8 \otimes m_9$	No cooling
$m_C =$	$m_1 \otimes m_{10} \otimes \cdots \otimes m_{16}$	Reasonable middle
$m_D =$	m_5	No problem
m —	$m \cdot \cap m \circ \cap m \circ \cap m \circ$	

 $m = m_A \odot m_B \odot m_C \odot m_D$

Probability and plausibility used to present results

Any *m* defines a probability p^m by:

$$p^{m}(\omega_{i}) = \sum_{X \ni \omega_{i}} \frac{m^{*}(X)}{|X|}$$
(11)

Any m defines a plausibility function pl, which is given on singletons by:

$$pl(\{\omega_i\}) = \sum_{X \ni \omega_i} m(X)$$
(12)

Levels of probability are generally smaller than levels of plausibility.

Results: fusion of 16 experts on $\Delta T_{2\times}$, MK 1995 survey

i	1	2	3	4	5	6	7
ω_i	-6,0	0,1.5	1.5,2.5	2.5,3.5	3.5,4.5	4.5,6.0	6.0,12
pl	0.48	1.	1.	0.99	0.74	0.59	0.31
p^m	0.08	0.21	0.21	0.21	0.14	0.10	0.05

Hierarchical better than symmetric fusion for expert aggregation

	Average	⊕ , Ô	\otimes	0
Majority rule	©	\checkmark	\checkmark	\checkmark
Contradiction	\checkmark	©	٢	\checkmark
Unjust. accuracy	\checkmark	٢	\checkmark	٢

Fusion	$m(\Omega)$	$\leq 1.5^{\circ}{ m C}$	In range	$\geq 4.5^{\circ}C$
method		bel–pl	bel–pl	bel–pl
Hierarchical	0.18	01.	01.	00.61
Average	0.08	0.07–0.69	0.27-0.93	00.45
disc. Dempster	0.	0.02-0.03	0.97–0.98	0.—0.
Disjunction	0.99	01.	01.	01.

The likelihood of $\Delta T_{2x} < 1.5^{\circ}\mathrm{C}$ has decreased since 1995

IPCC 2001: Climate sensitivity is likely to be in the 1.5 to 4.5° C range (unchanged from 1979)

$\Delta T_{2x} \in \ldots$	$[0^{\circ}\mathrm{C}, 1.5^{\circ}\mathrm{C}]$	$[1.5^{\circ}\mathrm{C}, 4.5^{\circ}\mathrm{C}]$	$[4.5^{\circ}\mathrm{C}, 10^{\circ}\mathrm{C}]$
Published PDFs	[0, 0.07]	[0.31, 0.98]	[0.02, 0.62]
Kriegler (2005)	[0, 0.00]	[0.53, 0.99]	[0.01, 0.47]

IPCC 2007: [2, 4.5° C] is likely, below 1.5° C is very unlikely.

Note:

Likely means $0.66 \le p \le 0.90$, very unlikely means $p \le 0.1$.

Conclusions

A hierarchical approach to fusion expert opinions:

- Imprecise
- Deals with dependencies and contradiction
- Avoid majority rule and calibration
- Requires a sociological study of experts groups

About climate sensitivity:

Above 4.5°C was already plausible in 1995

▶ Below 1.5°C is less plausible today

Symmetric fusions operators vs. Hierarchical approaches

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Expert 1: bayesian m (top), consonnant m (bottom)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Sensitivity analysis. Bayesian left, consonnant right.

Cautious combination within groups

Result of the hierarchical fusion: the belief function

subset A	$m^*(A)$
{2}	0.0001
{3, 2}	0.0074
{4, 2}	0.0033
{4, 3, 2}	0.1587
{4, 3, 2, 1}	0.0064
{5, 4, 2}	0.0011
{5, 4, 3, 2}	0.1321
{5, 4, 3, 2, 1}	0.0709
{6, 4, 3, 2}	0.0267
{6, 4, 3, 2, 1}	0.0129
{6, 5, 4, 3, 2}	0.0888

subset A (cont.)	$m^*(A)$
{6, 5, 4, 3, 2, 1}	0.1811
{7, 4, 3, 2}	0.0211
{7, 5, 4, 3, 2}	0.0063
{7, 6, 4, 3, 2}	0.0135
{7, 6, 4, 3, 2, 1}	0.0105
{7, 6, 5, 4, 3, 2}	0.0632
{7, 6, 5, 4, 3, 2, 1}	0.1956