IPMU'08, June 22-27, 2008, Málaga, Spain

A hierarchical fusion of expert opinion in the Transferable Belief Model (TBM)

Minh Ha-Duong, CNRS, France

The frame of reference: climate sensitivity

Climate sensitivity $\Delta T_{2 \times}$ is:
The long term global warming if $\left[\mathrm{CO}_{2}\right]$ in the atmosphere doubles Uncertain: $1.5^{\circ} \mathrm{C}$ to $4.5^{\circ} \mathrm{C}$.

Morgan and Keith (1995) obtained probability density functions by interviewing 16 leading U.S. climate scientists.

Experts' uncertainty range subdivided in 7 intervalls to simplify:

$$
\begin{aligned}
\Omega & =\left\{\omega_{1}, \ldots, \omega_{7}\right\} \\
& =\{[-6,0],[0,1.5],[1.5,2.5],[2.5,3.5],[3.5,4.5],[4.5,6],[6,12]\}
\end{aligned}
$$

Variety of views: everything possible $\{2,3 \ldots\}$, no cooling $\{4 \ldots\}$, reasonable middle $\{1 \ldots\}$, no problem $\{5\}$

Fusion issues using experts as information sources

- Dependance \rightarrow Avoid unjustified accuracy
- Complete contradiction \rightarrow Need paraconsistency
- Scientific validity \neq popularity \rightarrow No majority rule
- Calibrating experts is not practical \rightarrow don't !

Categorical beliefs: the indicator function $\mathbf{1}_{E}$

Belief that the state of the world is in the subset $E=\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}$
of the frame of reference $\Omega=\left\{\omega_{1}, \ldots, \omega_{7}\right\}$ is represented by $m=1_{E}$ the indicator function of E :

$$
\left\{\begin{array}{l}
m\left(\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}\right)=m(E)=1 \tag{1}\\
m(A)=0 \quad \text { for any other } A \subset \Omega, A \neq E
\end{array}\right.
$$

Representing belief with a random subset of Ω

We allocate the unit "mass of belief" among subsets of Ω.
$m: 2^{\Omega} \rightarrow[0,1]$ is a Basic Belief Assignment iff:

$$
\begin{equation*}
\sum_{A \subset \Omega} m(A)=1 \tag{2}
\end{equation*}
$$

Corner cases included: ignorance and contradiction

Total ignorance, no information Void beliefs represented by $\mathbf{1}_{\Omega}$.

Total confusion Contradictory beliefs represented by $\mathbf{1}_{\emptyset}$.

Discounting and simple beliefs

Discounting is adding a degree of doubt r to a belief m by mixing it with the void beliefs:

$$
\begin{equation*}
\operatorname{disc}(m, r)=(1-r) m+r \mathbf{1}_{\Omega} \tag{3}
\end{equation*}
$$

Denote A^{s} the simple belief that
"The state of the world is in A, with a degree of confidence s ":

$$
\begin{equation*}
A^{s}=\operatorname{disc}\left(\mathbf{1}_{A}, e^{-s}\right) \tag{4}
\end{equation*}
$$

That is:

$$
\left\{\begin{array}{l}
A^{s}(A)=1-e^{-s} \\
A^{s}(\Omega)=e^{-s} \\
A^{s}(X)=0 \quad \text { if } X \neq A \text { and } X \neq \Omega
\end{array}\right.
$$

Conjunction © and disjunction (1) of beliefs

When two reliable information sources say one A and the other B, believe in the intersection of opinions (TBM allows $\mathbf{1}_{\emptyset}$):

$$
\mathbf{1}_{A} \odot \mathbf{1}_{B}=\mathbf{1}_{A \cap B}
$$

Generally:

$$
\begin{equation*}
\left(\mu_{1} \odot \mu_{2}\right)(A)=\sum_{B \cap C=A} \mu_{1}(B) \mu_{2}(C) \tag{5}
\end{equation*}
$$

When at least one source is reliable, consider the union of opinions.

$$
\begin{equation*}
\left(\mu_{1} \oplus \mu_{2}\right)(A)=\sum_{B \cup C=A} \mu_{1}(B) \mu_{2}(C) \tag{6}
\end{equation*}
$$

Canonical decomposition in simple beliefs

For any m such that $m(\Omega)>0$, there are weights $(s(A))_{A \subsetneq \Omega}$ such that:

$$
\begin{equation*}
m=\underset{A \subseteq \Omega}{@} A^{s(A)} \tag{7}
\end{equation*}
$$

Weights of the © conjonction are the sum of weights:

$$
\begin{equation*}
m_{1} \bigcirc m_{2}=\underset{A \subsetneq \Omega}{\bigcirc} A^{s_{1}(A)+s_{2}(A)} \tag{8}
\end{equation*}
$$

(®) Conjunction increases confidence: $A^{s} \odot A^{s}=A^{2 s}$.
Good for independent information sources, but for experts we want to avoid unjustified accuracy

T. Denœux's cautious combination operator

Whenever...
Expert 1 has confidence $s_{1}(A)$ that state of the world is in A
Expert 2 has confidence $s_{2}(A)$
...follow the most confident:

$$
\begin{equation*}
m_{1} \otimes m_{2}=\bigcap_{A \subsetneq \Omega}^{\bigcirc} A^{\max \left(s_{1}(A), s_{2}(A)\right)} \tag{9}
\end{equation*}
$$

Distributivity: $\left(m_{1} \odot m_{3}\right) \otimes\left(m_{2} \odot m_{3}\right)=\left(m_{1} \odot m_{2}\right) \odot m_{3}$
Interpretation:
Expert 1 has beliefs $m_{1} \odot m_{3}$
Expert 2 has beliefs $m_{2} \odot m_{3}$
(\wedge cautious combination of experts counts evidence m_{1} only once.

Historical operators: Averaging and Dempster's rule

Averaging is $\quad \frac{m_{1}(X)+m_{2}(X)}{2}$

Renormalizing m means replacing it with m^{*} such that $m^{*}(\emptyset)=0$ and

$$
m^{*}(X)=\frac{m(X)}{1-m(\emptyset)}
$$

Dempster's rule is renormalized conjunction:

$$
\begin{equation*}
m_{1} \oplus m_{2}=\left(m_{1} \odot m_{2}\right)^{*} \tag{10}
\end{equation*}
$$

There is no satisfying fusion operator

Discounting decreases contradiction issues, but calibrating experts is not practical.

A hierarchical approach

1. Partition experts in schools of thought (adaptative or sociological methods)
2. Within groups, \star cautious combination
3. Across theories, (O) disjonction

Using the climate experts dataset:

$$
\begin{array}{rlr}
m_{A} & =m_{2} \otimes m_{3} \otimes m_{6} & \text { Everything possible } \\
m_{B} & =m_{4} \otimes m_{7} \otimes m_{8} \otimes m_{9} & \text { No cooling } \\
m_{C} & =m_{1} \otimes m_{10} \otimes \cdots \otimes m_{16} & \text { Reasonable middle } \\
m_{D} & =m_{5} & \text { No problem } \\
m & =m_{A} \oplus m_{B} \otimes m_{C} \oplus m_{D} &
\end{array}
$$

Probability and plausibility used to present results

Any m defines a probability p^{m} by:

$$
\begin{equation*}
p^{m}\left(\omega_{i}\right)=\sum_{X \ni \omega_{i}} \frac{m^{*}(X)}{|X|} \tag{11}
\end{equation*}
$$

Any m defines a plausibility function $p /$, which is given on singletons by:

$$
\begin{equation*}
p \prime\left(\left\{\omega_{i}\right\}\right)=\sum_{X \ni \omega_{i}} m(X) \tag{12}
\end{equation*}
$$

Levels of probability are generally smaller than levels of plausibility.

Results: fusion of 16 experts on $\Delta T_{2 \times}$, MK 1995 survey

Simple distributions associated with the result BBA :

ム...- pl on singletons

- - ■ - - Pignistic probability

i	1	2	3	4	5	6	7
ω_{i}	$-6,0$	$0,1.5$	$1.5,2.5$	$2.5,3.5$	$3.5,4.5$	$4.5,6.0$	$6.0,12$
$p l$	0.48	1.	1.	0.99	0.74	0.59	0.31
p^{m}	0.08	0.21	0.21	0.21	0.14	0.10	0.05

Hierarchical better than symmetric fusion

 for expert aggregation| | Average | \oplus, © | (1) | (1) |
| :---: | :---: | :---: | :---: | :---: |
| Majority rule | ${ }^{\text {© }}$ | \checkmark | \checkmark | \checkmark |
| Contradiction | \checkmark | $\stackrel{+}{ }$ | ${ }^{+}$ | \checkmark |
| Unjust. accuracy | \checkmark | ${ }^{\text {® }}$ | \checkmark | $\stackrel{\text { ® }}{ }$ |

Fusion method	$m(\Omega)$	$\leq 1.5^{\circ} \mathrm{C}$ $b e l-p l$	In range $b e l-p l$	$\geq 4.5^{\circ} \mathrm{C}$ bel $-p l$
Hierarchical	0.18	$0 .-1$.	$0 .-1$.	$0 .-0.61$
Average	0.08	$0.07-0.69$	$0.27-0.93$	$0 .-0.45$
disc. Dempster	0.	$0.02-0.03$	$0.97-0.98$	$0 .-0$.
Disjunction	0.99	$0 .-1$.	$0 .-1$.	$0 .-1$.

The likelihood of $\Delta T_{2 x}<1.5^{\circ} \mathrm{C}$ has decreased since 1995

IPCC 2001: Climate sensitivity is likely to be in the 1.5 to $4.5^{\circ} \mathrm{C}$ range (unchanged from 1979)

$\Delta T_{2 x} \in \ldots$	$\left[0^{\circ} \mathrm{C}, 1.5^{\circ} \mathrm{C}\right]$	$\left[1.5^{\circ} \mathrm{C}, 4.5^{\circ} \mathrm{C}\right]$	$\left[4.5^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}\right]$
Published PDFs	$[0,0.07]$	$[0.31,0.98]$	$[0.02,0.62]$
Kriegler (2005)	$[0,0.00]$	$[0.53,0.99]$	$[0.01,0.47]$

IPCC 2007: $\left[2,4.5^{\circ} \mathrm{C}\right]$ is likely, below $1.5^{\circ} \mathrm{C}$ is very unlikely.

Note:
Likely means $0.66 \leq p \leq 0.90$, very unlikely means $p \leq 0.1$.

Conclusions

A hierarchical approach to fusion expert opinions:

- Imprecise
- Deals with dependencies and contradiction
- Avoid majority rule and calibration
- Requires a sociological study of experts groups

About climate sensitivity:

- Above $4.5^{\circ} \mathrm{C}$ was already plausible in 1995
- Below $1.5^{\circ} \mathrm{C}$ is less plausible today

Symmetric fusions operators vs. Hierarchical approaches

disc. Cautious conj.

disc. niConj.

niDisjunction

Averaging

Hierarchical

Hierarchical 3-way

Average within

Expert 1: bayesian m (top), consonnant m (bottom)

Sensitivity analysis. Bayesian left, consonnant right.

Average

dDempster

niDisjunction

Hierarchical

Average

dDempster

niDisjunction

Hierarchical

Cautious combination within groups

Experts groups:

Result of the hierarchical fusion: the belief function

subset A	$m^{*}(A)$
$\{2\}$	0.0001
$\{3,2\}$	0.0074
$\{4,2\}$	0.0033
$\{4,3,2\}$	0.1587
$\{4,3,2,1\}$	0.0064
$\{5,4,2\}$	0.0011
$\{5,4,3,2\}$	0.1321
$\{5,4,3,2,1\}$	0.0709
$\{6,4,3,2\}$	0.0267
$\{6,4,3,2,1\}$	0.0129
$\{6,5,4,3,2\}$	0.0888

subset A (cont.)	$m^{*}(A)$
$\{6,5,4,3,2,1\}$	0.1811
$\{7,4,3,2\}$	0.0211
$\{7,5,4,3,2\}$	0.0063
$\{7,6,4,3,2\}$	0.0135
$\{7,6,4,3,2,1\}$	0.0105
$\{7,6,5,4,3,2\}$	0.0632
$\{7,6,5,4,3,2,1\}$	0.1956

