Scenarios, probability and possible futures

Conference on ambiguity, uncertainty and climate change, UC Berkeley, September 17-18, 2009

Minh Ha-Duong

HaDuong@centre-cired.fr

CIRED, CNRS

Scenarios, probability and possible futures - p. 1

1. Outline

- 1. Intro on scenarios and probabilities.
- 2. Defining possibility.
- 3. How (im)plausible should scenarios be ?

Any precise scenario probability is 0

IPCC wrote about +5.5° C in 2100

- SRES: No preferred scenario, no probabilities
- Commonsense: plausibility levels vary

An everlasting controversy:

- Probabilistic Forecasts: $\{F_i, p_i\}$
- **Scenarios** without quantified belief: $\{S_i\}$

Possibility theory agrees with both SRES team and commonsense: $\{S_i, \pi_i\}$ Fuziness in the F_i is another topic

Social sciences beyond ambiguity

Scenarios are also used for:

- Surprises
- Taboos

Values

Strategic uncertainty

2. Defining possibility (informally)

 π = 1 - degree of surprise

Shackle (1953)

A subjective function related to beliefs about an event X (Zadeh 1978, Dubois et Prade 1988)

- X is impossible: $\pi(X) = 0$
- X is perfectly possible: $\pi(X) = 1$

Normalisation and maxitivity axioms

 π (less surprising future) = 1

If *A* and *B* are two future events with possibility levels $\pi(A)$ and $\pi(B)$, then possibility of '*A* ou *B*' is the maximum of the two.

Formal definition

Possibility distribution: a function $\pi(x)$ defined for any $x \in \Omega$ into [0, 1], such that its maximum is 1.

Having π on the singletons, we can define the possibility of any subset $A \subset \Omega$ with:

$$\pi(A) = \max_{\omega \in A} \pi(\omega)$$

Which indeed verifies:

$$\pi(A \cup B) = \max(\pi(A), \pi(B))$$

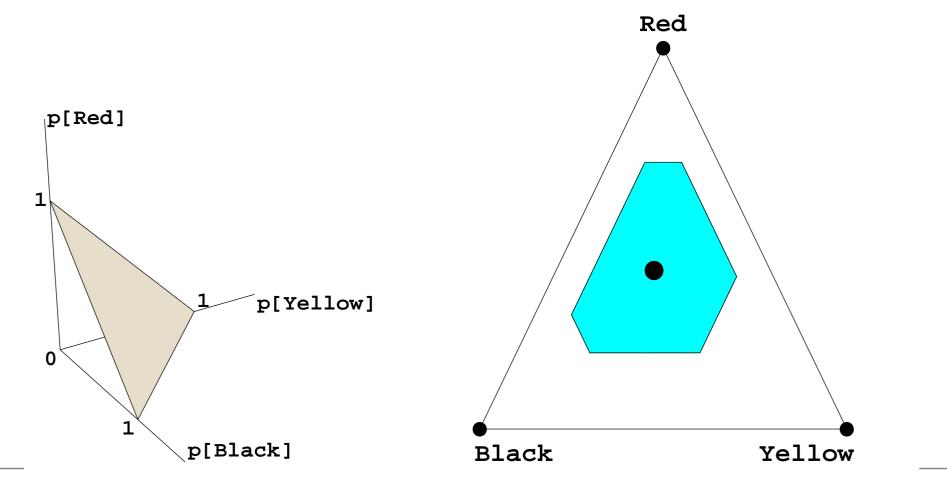
even if they overlap.

Possibility as imprecise probability

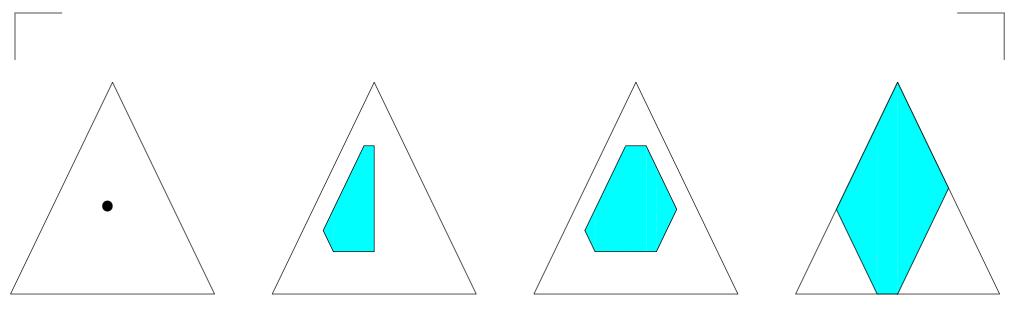
 π defines a set of admissible probability distributions C:

$$p \in \mathcal{C} \iff p(A) \le \pi(A) \text{ for all } A \subset \Omega$$

Saying that the possibility of *A* is $\pi(A)$ amounts to say that the probability of *A* is smaller than $\pi(A)$.


De Finetti view: bet that A will not happen if and only if it pays more than

$$\frac{\pi}{1-\pi}:1$$


The space of Ellsberg's urns

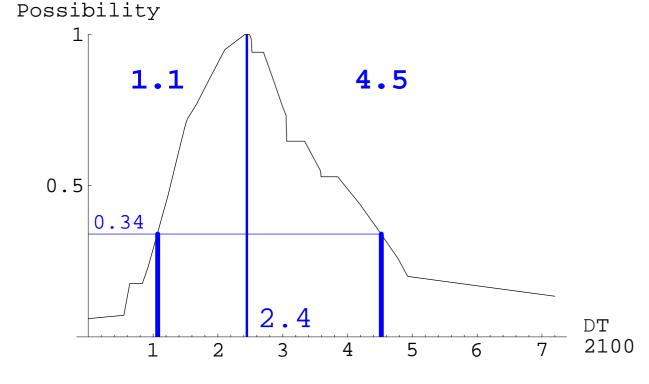
Each point in the triangle represents a probability distribution.

Blue: a set of admissible probability distributions $\ensuremath{\mathcal{C}}$

More or less imprecise probabilities

These sets represent increasingly ambiguous beliefs, from precise probabilistic (left) to possibilistic (right).

3. How plausible should scenarios be ?


Assuming we have:

- Frame of reference: states of the world which can be described Ω .
- Goals and values: an objective function J (e.g. global warming).
- Ambiguous knowledge: multiple priors C.

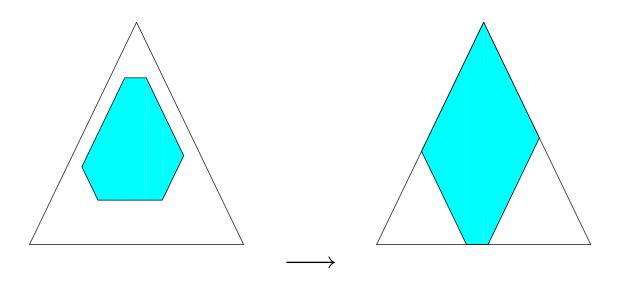
We propose a principled method to determine a small number of plausible futures $\{S_i, \pi_i\}$

Example result

A set of three scenarios for global warming in 2100. One at $\pi = 1$, the other two at $\pi = \frac{1}{3}$.

So $+5.5^{\circ}$ C seems unlikely (<20%).

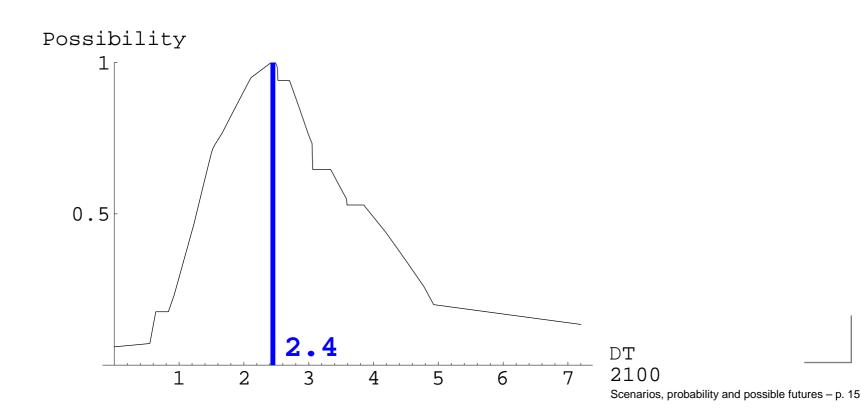
Scenarios making principles


Summarize available information C by assessing the possibility distribution of the objective J, then choose scenarios S according to multiple criteria:

- Do not restrict possibilities
- Include a perfectly possible scenario
- Keep equiprobability admissible
- Contrast extremes

P1: Do not restrict possibilities

If the expert believes something is possible, it should say so:


 $\pi(s) \ge \max_{p \in \mathcal{C}} p(s)$

Enlarging beliefs reduces the set of desirable gambles.

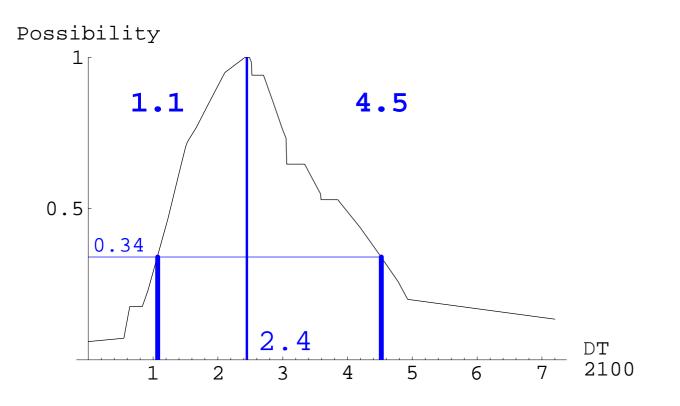
P2: Include a perfectly possible scenario

- Pros and cons
- If no single business as usual, then include multiple futures at $\pi = 1$

P3: No preferred scenario

Partial ordering defined by C:

A is more probable than B whenever it holds for all admissible probability distributions:


for all $p \in \mathcal{C}$, p(A) > p(B)

It is sufficient to have equiprobability in C to prevent any preference relation.

 \Rightarrow If the expert provides N futures, their possibility should be more than 1/N.

P4: Contrast extremes

For a given objective function, trade plausibility for extensivity.

Conclusion

This principled scenario-choosing method allows a progressive disclosure of information.

- Less surprising future
- A few number of plausible futures
- Quantified, imprecise beliefs
- The published litterature