Ambiguity, uncertainty and climate change, UC Berkeley, September 17-18, 2009

A hierarchical fusion of expert opinion in the Transferable Belief Model (TBM)

Minh Ha-Duong, CNRS, France

Outline

- 1. Intro: decision and controversies
- 2. The Transferable Belief Model
- 3. A hierarchical aggregation procedure

Theoretical teasers:

- No information (≠ equiprobability)
- ▶ Contradiction (\neq no information)
- Incompleteness (assimilated to contradiction)
- Negative information

Climate sensitivity $\Delta T_{2\times}$

Long term global warming if $[CO_2]$ in the atmosphere doubles Uncertain communication anchor: 1.5° C to 4.5° C.

Morgan and Keith (1995) obtained probability density functions by interviewing 16 leading U.S. climate scientists.

Experts' uncertainty range subdivided in 7 intervalls to simplify:

$$\Omega = \{\omega_1, \dots, \omega_7\}$$

$$= \{[-6, 0], [0, 1.5], [1.5, 2.5], [2.5, 3.5], [3.5, 4.5], [4.5, 6], [6, 12]\}$$

A variety of views

Everything possible $\{2,3...\}$, no cooling $\{4...\}$, reasonable middle $\{1...\}$, no problem $\{5\}$

Problems with experts opinions

- lacktriangle Interaction, not independance ightarrow Avoid unjustified accuracy
- ► Complete contradiction → Need paraconsistency
- ▶ Scientific validity \neq popularity \rightarrow No majority rule
- ightharpoonup Calibrating experts is not practical ightharpoonup don't !

Proposition: hierarchical fusion

- i. Partition experts into groups/school of tought/theories
- ii. Within each group, cautious combination of opinions
- iii. Between groups, disjonction

2. Transferable Beliefs Model

Like Dempster-Shafer, allocate the unit "mass of belief" among subsets of Ω , but allow $m(\{\}) > 0$.

$$m$$
 such that $\sum m(A) = 1$

Belief: climate sensitivity is in [1.5,4.5°C]

Such categorical beliefs are denoted E^{∞}

Special categorical beliefs

Empty beliefs, no information Ω^{∞} .

Doubt, simple beliefs

One can add some doubt to a belief m by diluting it with empty beliefs:

$$doubt(m,r) = (1-r)m + r\Omega^{r}$$

"The state of the world is E, with a degree of confidence s" is denoted

$$E^{s} = \mathsf{doubt}(E^{\infty}, e^{-s}) \tag{1}$$

Conjunction and disjunction of beliefs

When two reliable information sources say one A and the other B, believe in the intersection of opinions (even if empty):

$$A^{\infty} \cap B^{\infty} = (A \cap B)^{\infty}$$

More generally (non-normalized Dempster's rule):

$$(\mu_1 \otimes \mu_2)(A) = \sum_{B \cap C = A} \mu_1(B)\mu_2(C)$$

When at least one source is reliable, consider the union of opinions:

$$(\mu_1 \odot \mu_2)(A) = \sum_{B \cup C = A} \mu_1(B)\mu_2(C)$$

Canonical decomposition in simple beliefs

For any m such that $m(\Omega) > 0$, there are weights $(s(A))_{A \subseteq \Omega}$ such that (some weights may be < 0):

$$m = \bigcap_{A \subseteq \Omega} A^{s(A)} \tag{2}$$

Doing the \odot conjonction amounts to adding these weights:

$$m_1 \odot m_2 = \bigcap_{A \subseteq \Omega} A^{s_1(A) + s_2(A)} \tag{3}$$

 \bigcirc Conjunction increases confidence: $A^s \odot A^s = A^{2s}$.

Good for independent information sources, but unjustified accuracy for interactive experts

T. Denœux's cautious combination operator

Whenever...

Expert 1 has confidence $s_1(A)$ that state of the world is in A Expert 2 has confidence $s_2(A)$

...follow the most confident:

$$m_1 \otimes m_2 = \bigcap_{A \subseteq \Omega} A^{\max(s_1(A), s_2(A))} \tag{4}$$

Distributivity: $(m_1 \odot m_3) \otimes (m_2 \odot m_3) = (m_1 \otimes m_2) \odot m_3$

Interpretation:

Expert 1 has beliefs $m_1 \odot m_3$

Expert 2 has beliefs $m_2 \odot m_3$

 \bigcirc cautious combination of experts counts evidence m_1 only once.

3. All fusion operator are flawed

	Averaging	⊕, ⊚	\Diamond	\bigcirc
Contradiction	\checkmark	©	3	\checkmark
False precision	\checkmark	©	\checkmark	3
Majority rule	②	\checkmark	\checkmark	\checkmark

Table: There is no fusion operator that meets the three theoretical challenges.

Adding doubt decreases contradiction, but calibrating experts?

Hierarachical fusion

- Partition experts into groups using adaptative methods or sociology)
- ii. Within each group, cautious combination of opinions
- iii. Between groups, disjonction

Using the climate experts dataset:

$$m_A = m_2 \otimes m_3 \otimes m_6$$
 Everything possible $m_B = m_4 \otimes m_7 \otimes m_8 \otimes m_9$ No cooling $m_C = m_1 \otimes m_{10} \otimes \cdots \otimes m_{16}$ Reasonable middle $m_D = m_5$ Denial $m = m_A \otimes m_B \otimes m_C \otimes m_D$

How to represent m?

It spreads an unit mass of belief among the subsets A of Ω

Up to $2^{|\Omega|}$ numbers, where $|\Omega|$ denotes the number of elements of Ω . Inconvenient.

Probability and plausibility

Any m defines a probability p^m by:

$$\rho^{m}(\omega_{i}) = \sum_{X \ni \omega_{i}} \frac{m(X)}{|X|} \tag{5}$$

Any m defines a plausibility function pl, which is given on singletons by:

$$pl(\{\omega_i\}) = \sum_{X \ni \omega_i} m(X) \tag{6}$$

Probability levels are generally less than plausibility levels.

Results: fusion of 16 experts on $\Delta T_{2\times}$, MK 1995

i	1	2	3	4	5	6	7
ω_i °C	-6,0	0,1.5	1.5,2.5	2.5,3.5	3.5,4.5	4.5,6.0	6.0,12
pΙ	0.48	1.	1.	0.99	0.74	0.59	0.31
p^m	0.08	0.21	0.21	0.21	0.14	0.10	0.05

Belief that $\Delta T_{2x} < 1.5^{\circ}\mathrm{C}$ decreased since 1995

IPCC then (2001): Climate sensitivity is likely to be in the 1.5 to 4.5°C range (unchanged from 1979).

IPCC now (2007): [2, 4.5° C] is likely, below 1.5° C is very unlikely.

$\Delta T_{2x} \in \dots$	$[0^{\circ}\mathrm{C}, 1.5^{\circ}\mathrm{C}]$	$[1.5^{\circ}C, 4.5^{\circ}C]$	[4.5°C, 10°C]
Published PDFs	[0, 0.07]	[0.31, 0.98]	[0.02, 0.62]
Kriegler (2005)	[0, 0.00]	[0.53, 0.99]	[0.01, 0.47]

Table: Probability intervalls for climate sensitivity.

Note:

Likely means $0.66 \le p \le 0.90$, very unlikely means $p \le 0.1$.

Sensitivity analysis to fusion method

Conclusions

A hierarchical approach to fusion expert opinions:

- Imprecise
- Deals with dependencies and contradiction
- Avoid majority rule and calibration
- Requires a sociological study of experts groups

About climate sensitivity:

- ► Above 4.5°C was already plausible in 1995
- ▶ Below 1.5°C is less plausible today

Expert 1: bayesian m (top), consonnant m (bottom)

Sensitivity analysis. Bayesian left, consonnant right.

Cautious combination within groups

Result of the hierarchical fusion: the belief function

subset A	$m^*(A)$
{2}	0.0001
{3, 2}	0.0074
{4, 2}	0.0033
{4, 3, 2}	0.1587
{4, 3, 2, 1}	0.0064
{5, 4, 2}	0.0011
{5, 4, 3, 2}	0.1321
{5, 4, 3, 2, 1}	0.0709
$\{6, 4, 3, 2\}$	0.0267
{6, 4, 3, 2, 1}	0.0129
{6, 5, 4, 3, 2}	0.0888

subset A (cont.)	$m^*(A)$
{6, 5, 4, 3, 2, 1}	0.1811
{7, 4, 3, 2}	0.0211
{7, 5, 4, 3, 2}	0.0063
{7, 6, 4, 3, 2}	0.0135
$\{7, 6, 4, 3, 2, 1\}$	0.0105
{7, 6, 5, 4, 3, 2}	0.0632
{7, 6, 5, 4, 3, 2, 1}	0.1956