Carbon Capture and Storage (CCS)

Minh Ha-Duong Nguyen Thanh Nhan CIRED, CNRS

haduong@centre-cired.fr

What is it ?

CCS is:
New technology, new market
A climate policy option
Projects in communities

Example: Sleipner natural gas field, Norway

CO2 capture and storage pathways

Outline

I. Economics : CO2 markets and CCSII. CCS risksIII.A case study in FranceIV.The case for CCS in Vietnam

I. Economics of CO2 and CCS

1. The CO₂ emission permits market

• There is a wide variety of industries

• It is more efficient to rule them using one market instrument : the emissions trading system

36 largest CO₂ emitters industry & energy

36 largest (MtCO2, 2005)

ETS: Emission Trading System

• To emit CO2 european firms must have *allowances*

• Allowances can be sold or bought

• Initial quantity given free in 2005, Auctions to be used in later periods

ETS CO₂ allowances: Price history

ETS allowance is 15-25 €/tCO₂

Is that enough to justify CCS?

2. Costs along the CCS chain

Adding up the costs of:

- Capture + compression,
- Transport: pipeline or ship
- Storage; siting, injection, monitoring

Technologies known, but We need large scale, integrated pilots

CO_2 avoided = CO_2 captured - emissions of CCS

3 ways to capture

Source : Bolland (2004)

Capture costs estimates (€/tCO2)

Existing studies suggest 25-40 €/tCO2 in 2020, but no technology is mature.

Between post- and oxycombustion, it's unclear which is cheapest.

Post-combution as retrofit on coal plant: + 10-20 €/tCO2, but it's the only choice

Source : Vattenfall

Moving CO₂ around

PipelineShip(supercritical dense phase)(oversea/offshore storage)

- Commercially available technologies
- Low technical progress
- Economies of scale

Costs with pipelines (US\$/tCO2/250km)

Shipping cheaper over 2000km

Storage costs - €/tCO2 avoided (TNS-Ecofys 1999)

But there are uncertainties

Risks of leakage: Imply long term monitoring

Economic framework is uncertain (post Kyoto regulation, ETS...)

No public opinion exists yet

Estimated total cost, today

43 - 52 € / tCO2 avoided for 10 M t/yr

Capture is the expensive step

CCS is way over CO2 market price

Incitations are needed 50 €/tCO2 (CCS) > 20 €/tCO2 (ETS)

There are public benefits to R, D & D

Electricity production cost increases by >30%

Coal plant: from 4.3-5.2 c/kWh without to 6.3-9.9 c/kWh with CCS 400M\$ additional investment

 Natural gas combined cycle: 3.1 - 5.0 c/kWh without 4.3 - 7.7 c/kWh with

Source: IPCC SRCCS

Cost reduction target: 20€/tCO2

Development of total estimated cost (capture, transport and storage)

EUR/ton CO₂

Vattenfall

Conclusion

- CCS costs ~50 €/tCO₂ today
- Capture is expensive

II. On CCS risks

Risks are lived with

- Acceptability is politically constructed with communities
- Climate change is a bigger risk

■1. CO2 risks are lived with

• CO2 tends to leak

- Lighter than water
- An acid than may react with the rock
- But

- Natural analogues (volcanism)
- Artificial analogues (workers ≠ public)
- Models are improving

Volcanism: CO₂ is dangerous

- Rabaul, Papua New Guinea: In June of 1990, three people died of suffocation in a vent of the east side of Tavurvur. Three more died trying to retrieve the bodies.
- Vestmannaeyjar (Heimaey), Iceland: During the 1973 eruption a sleeping man was killed by carbon dioxide as it pooled in the basement of his house.
- Italy 1650 : eruption of Etna caused about 40 deaths; some caused by opthalmias from sulfurous vapors and suffocation. The crew of a ship suffocated as it passed the volcano.

Lac Nyos, Cameroun: August 21st, 1986, 1700 deaths.

Artificial risks CO_2 in the workplace

Coal mining

- Agriculture and food industry
- Fire suppression systems

Community risk: A more plausible analog of orphaned well leakage

CO2 leaks already managed

Summary: CCS risky but manageable

- People live near industrial risks
- People live near CO₂ leaks

2. The acceptance issue

• What is acceptability ?

- Psychological approach
- Sociological studies

Acceptability by whom ?

- Stakeholders:
 - Local administration
 - Central administration
 - Industry
 - Non governmental organisations
- The public at large

Acceptability of what ?

• A technology: Market acceptability

- An reply to climate change: Sociopolitical acceptability
- A project: Community acceptability

Non-acceptance case "Feds to Test Impact of Dumping CO2 into Kona Waters" *West Hawaii Today,* 18/3/1999.

Regulation and acceptance in other projects

- Existing "large" projects (1MtCO2/yr) Sleipner, In Salah, Weyburn
- Many smaller, pilot projects today to
 - Master the technological chain
 - Engage the administrations
 - Explore local acceptance issues

Psychological risk attributes

Bad

Imposed Artificial Catastrophic Unknown Memorable Feared

Just Moral Controlled Familliar Trusted actors

Good

Ref: Afsset, Janvier 2006 Perception du risque et participation du public

Perceived risk attributes: Multivariate analysis

Lessons of sociological studies: sociopolitical acceptability

• Oceanic storage is out

- Onshore still in (France at least)
- Approval conditional on accepting the necessity of climate change action
- CCS < renewables or conservation

Lessons of sociological studies: community acceptability

• No CCS cases yet

• Lessons from windmill sitting plans:

Technical approach (SIG layers) vs. Political approach (negociation)

Technical map vs. political map

Why was the CCS idea so good ? A cost-benefit analysis

The stabilisation triangle Tendance sobriété (Sobriety) 2. efficacité emissions C02 (Efficiency) hégawaty renouvelables (Renewables)

Time

Step		2007	2050	Assumptions
Coal Mining	Mt	0	5 257	All emissions are from coal-fired power plants. All coal carbon content is lignite.
Capture	sites	3	1 500	Intermediate between G8 and IEA estimations
	Mt	3	4 889	1GtC emissions avoided, 20% energy penalty, 95% capture efficiency
Transport by pipeline	km	1	100	For each capture site.
	Mt	3	4 000	About 90% of quantity captured.
Transport by shipping	miles	0	5 000	Average distance transported
	Mt	0	400	About 10% of quantity captured.
Injection	wells	12	2 000	Corresponds to about 2.4 Mt CO2/well yr
				On average 4 active injection wells/storage site
Storage	sites	3	500	From ~1 today to ~10 Mt CO2/site in 2050
	offshore	25%	10%	
	aquifers	50%	85,00%	

Additional activities required to not emit 1 GtC by using CCS at power plants	Fatality rate per year, per unit of activity	Expected fatalities in 2050
Mining 5 257 Mt of coal	0.03 to 0.06	266 to 490
Processing 4 889 Mt of CO2	0.001 7	8
Employing 7 500 to 15 000 workers (for capture at 1 500 sites)	3 to 14 10 ⁻⁵ (utilities industry) 4 to 17 10 ⁻⁵ (chemistry industry)	0.2 to 2 1 to 3
Operating 0.15 Mkm of CO2 pipelines	5.4 to 8.5 (US analogue)11 (Europe analogue)50 (Worst case assumption)	0.8 to 1.3 1.6 7.5
Shipping 2.2 billion tons nautical miles of CO2	11.4 (oil tankers)28.6 (all goods trade)	23 57
Employing 5 000 to 15 000 workers (to maintain, develop and monitor 2000 wells.)	20 to 30 10 ⁻⁵ (oil & gas industry)	1 to 4.5
Exposing 2.5 10^5 to 10^6 persons to a small diffuse environmental risk	10 ⁻⁶ (negligible level for individual risk)	0.25 to 1
Operating 500 man-made big installations	 10⁻³ (actual risk per site, Europe analogue) 5 10⁻² (Worst case assumption) 	0.5 2.5
Total		290.25 to 569.5

• Same as fossil fuels industry today

- Nuclear, hydro can be catastrophic
- Weather already causes 100.000s of fatalities

Conclusions

- CCS risks seem more manageable than many other risks: climate change, nanotech, GMOs
- Sociopolitical and local acceptability remain to be co-constructed
- As a global option, seems a good idea

III. A case in France

Social aspects of Total's Lacq project

Reinventing a valley, after a 50 year industrial history

- 1951: natural gas discovered at -3 550 m
- 1957: plant opens at 1 million m³ /day
- 1982: peaks at 33 million m³/day
- Today: < 10 million m³/day
- 2013-17: not the end
- 16 % H₂S, 10 % CO₂
- High Temp. & Pressure

Pilote CO2

35 months from intention to action

- Total press conference (Feb. 8Th 2007)
- ~40 key local actors meeting (Jun-Sep/07)
- Concertation: Web, paper, 3 public meetings (Nov. 07, help from **C&S Conseil**)
- CLIS: Local information and surveillance commission meetings (April 08 present)
- Administrative public survey (July Sep 2008)
- Authorization (May 13th, 2009)
- Formal opening (January 11th, 2010)

Total's concertation

Nov. 2007: 3 public meetings (~300 persons, 3h) National level experts, real participation Experience from Cretace 4000 concertation

Topics: risks, transparency, control, economic interest, the platform's future.

Outcome: Climate change information day, CLIS

The CLIS (local information and surveillance commission)

- Legal institution, mandatory in some cases
- Composition: 4 State / 9 locally elected / 2 unions / 4 associations / 5 experts / 4 Total
- Installed 4/2008, met 7 times since
- Hears Total, can order additional investigations
- Reports and documents are made public at http://www.pyrenees-atlantiques.pref.gouv.fr/sections/actions_de_1_etat

The public survey

- 21/7/2008 22/9/2008 (64 days), 4 cities
- Double feature: Capture, Transport & storage
- Very weak participation (capture), contrasted (Transport and Storage) with 90% at Jurançon
 Favorable

Other actors

 ENGOs
 SEPANSO Béarn (federation affiliated to France Nature Environment)
 Côteaux du Jurançon (local opposition)

Research institutes (science comitee)
 BRGM, IFP, INERIS, CIRED/CNRS
 APESA (expertise, questionnaires)

Conclusion

- Favorable social and technical conditions, constrained but elements negociable
- Pro-active concertation works, but people always want more
- For NGOs, October 2007's « Grenelle de l'environnement » was only the beginning

IV. A case for CCS in Vietnam ?

- Potential (BRGM 2009)
- The Bach Ho proposal

Power plants above 2.5 Mt CO2 / yr

Existing and future coal-fired/natural gas combined cycle power plants (Pha Lai, Uong Bi, Hai Phong, Cam Pha, Quang Ninh, TBKHH Mien Trung, Coal Mien Trung, etc) in the river basin area of Song Hong and the North end.

Existing and future natural gas combined cycle/coalfired power plants (Phu My, Ca Mau, TBKHH Mien Nam, Tra Vinh, Kien Giang, Coal Mien Nam, etc) in the river basin area of Cuu Long.

Storage opportunities

Storage potentials near Vietnam shores and power plants

An early proposal at White Tiger field

The White Tiger (Bach Ho) Field project involves CO2 capture from Natural Gas Combined Cycle (NGCC) plants, pipeline transport, storage in offshore/onshore oil fields and enhanced oil recovery.

A big CO2 reduction opportunity

As the first commercial CCS project in Asia, it would have a high demonstration value, and could potentially generate emission reductions of approximately 7.7 million tCO2 per year, facilitating the recovery of an average of 50 thousand barrels of crude oil per day.

But CDM does not finance CCS

Work to include CCS in the CDM started in 2006, but has not yet been concluded as of December 2009.

Pending methodological and political issues

- The technology is still evolving
- The scale is out of proportion relative to the average CDM project: out of 2236 requested and registered projects in February 2010, only 7 are larger than the White Tiger project in terms of avoided emissions.

Conclusions

Big reductions, big money

- Enhanced oil recovery means CO2 storage now
- No new coal plants without carbon capture in Europe