Energy production and climate change mitigation in Vietnam CIRED international seminar, 24/10/2011

Minh Ha-Duong

Nguyen Thanh Nhan

Economic potential of Renewable energy in Vietnam's power sector

Nguyen Thanh Nhan and Minh Ha-Duong

Centre International de Recherche sur l'Environment et le Development CIRED/CNRS-FRANCE

18th-20th June, 2008

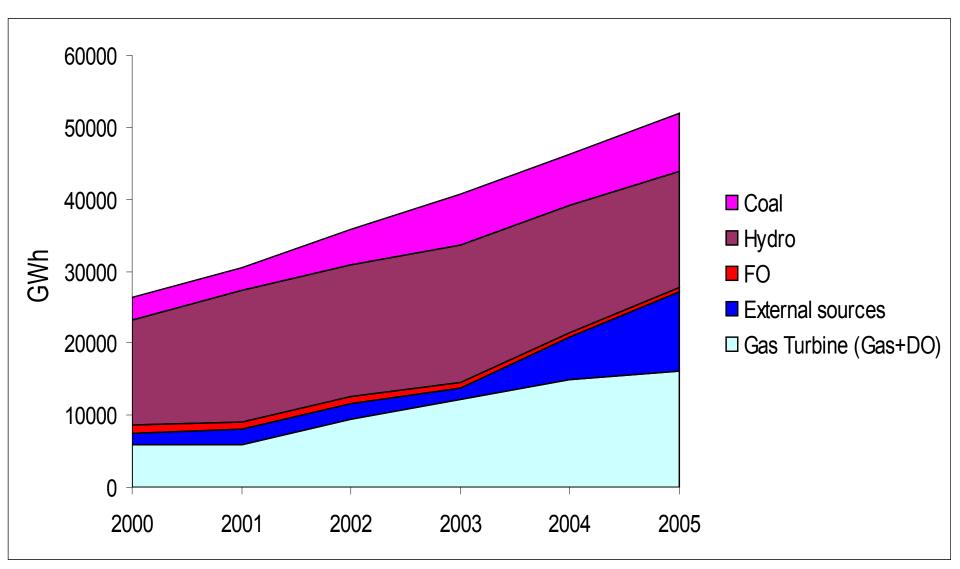
31th IAEE Conference, Istanbul

1. Outline

- 1. Vietnam power sector grows fast up to 2030
- 2. Integrated resource planning (IRP) model
- 3. Results with and without renewable energy

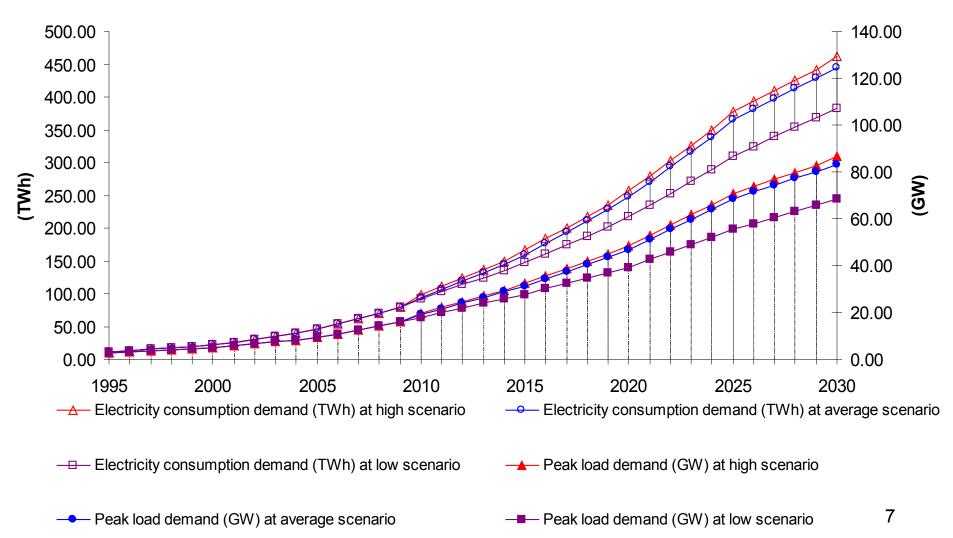
1. Outline

- 1. Vietnam power sector growth up to 2030
- 2. Integrated resource planning (IRP) model
- 3. Results with and without renewable energy
- Fossil fuels expected to be dominant
- Renewables can avoid installing 1GW coal
- and bring co-benefits


7.4%yr⁻¹ GDP Growth, 2000-2005

Sector	2000	2001	2002	2003	2004	2005
Agriculture, Forest & Fishing	4.6	3.0	4.1	3.2	3.4	3.8
Industry & Construction	10.1	10.4	9.4	10.3	10.3	11
Service	5.3	6.1	6.5	6.6	7.5	8.2
Total	6.8	6.9	7.04	7.24	7.7	8.5

Power generation grows faster


Installed capacity	Generation	Average annual growth rate			
in 2005	in 2005	Total electricity generation (2000-2005)	Thermal electricity generation (2000-2005)		
11.340 MW	52.050 GWh	15.18%	22.40%		

Primary sources, 2000-2005

Source: Institute of Energy of Vietnam, 2005

Electricity demand forecasts to 2030

Source: Institute of Energy of Vietnam, 2006

Policy options

Improve end use energy efficiency

Not discussed here

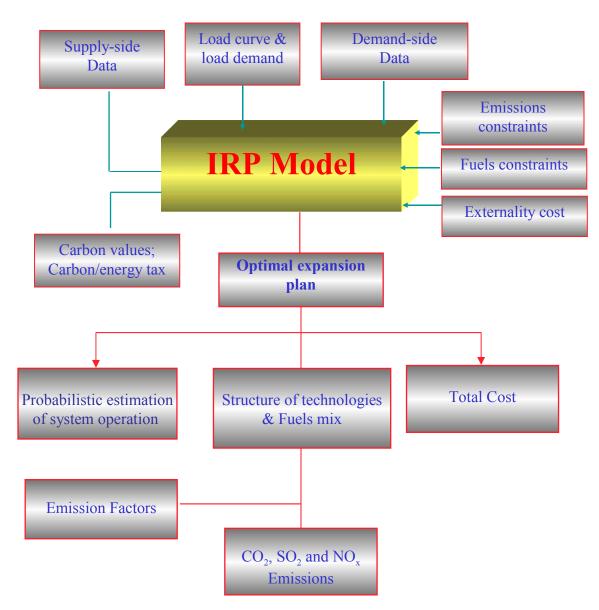
- Develop nuclear power
- Import electricity (Laos, Cambodia, China)
- Import coal (Australia, Indonesia)
- Import natural gas (via ASEAN pipeline)
- Develop renewable energy sources

2. The IRP model

- Name: Integrated Resource Planning
- Kind Bottom-up, MILP solved by CPLEX
- Author: Energy Program, Asian Institute of Technology, Thailand
- **Result:** Optimal plan to expand generation capacity to 2030

Accounting for:

Future generation technologies & fuels mix


Reliability, probabilistic estimation of system operation

Emissions and fuel usage constraints

Carbon/energy tax, and carbon values

Externalities and pollution costs

The IRP model

Minimize: Total System Costs =

{Capital + O&M +Fuels + DSM + Imported electricity}

Subject to:

- Peak demand constraints
- Annual energy constraints
- Hydro-energy constraints
- Reliability constraints
- Generating unit availability constraints
- Fuels or resources availability constraints
- Imports availability constraints
- Emission constraints 10

Model parameters

- Plant types: 5 conventional, 9 renewables
- 11 fuel prices, growing 1-2% per year
- Assumed economic potentials:
 - Small hydro 2 4 GW
 - Geothermal 1.4 GW
 - Wind 15 GW
 - Nuclear and DSM left out of these runs

Model use scenarios

Compare a model run without renewables against a model run with renewables

- Quantify the benefits of a **more diverse supply** for the electric power generation plan.
- How much could renewables help to save domestic energy ressources and alleviate the burden of imports?
- How much could renewables lessen health and environmental impacts?
- When are renewables cost-competitive?

3. Results: Fossil fuels dominate

	Renewables sources				Fossil fuels					
	RET	Large Hydro	Pump Storage	Domestic Coal	Import Coal	Domestic Gas	Imported Gas	Oil	Electricity imported	Total
				Generation	n capacity	share (%)				
Without RETs	0.0	14.1	10.2	35.5	12.0	13.2	7.5	0.6	6.8	99833 (MW)
With RETs	4.4	14.1	10.2	31.2	12.0	13.2	7.5	0.6	6.8	100065 (MW)
				Electricity	generatio	n share (%)				
Without RETs	0.0	16.1	2.3	30.3	13.4	25.5	6.9	0.3	5.2	7389.6 (TWh)
With RETs	5.0	16.1	2.3	25.8	13.1	25.4	6.6	0.3	5.1	7370.1 (TWh)
	4)				11			

RET: cost-effective yet, 4.4 GW includes small hydro (2 GW), geothermal (1.4 GW), biomass residues (1 GW).

Technical effects of renewables

HDM to NTN: Reorder this carefully so that it flows with the explanation

New capacity installed: reduced by 1 GW

Total generation: reduced by 19.5 TWh over <u>20XX - 20XX</u>

Domestic coal & natural gas: use reduced by 14.6% and 0.52%

Average thermal efficiency: improved, $46.7 \rightarrow 47.2\%$

Reliability: much improved, $0.05\% \rightarrow 0.01\%$ (??? LOLP ???).

Benefits to economy & environment

HDM to NTN: The economic numbers seem contradictory.

Price of electricity (AIC): reduced by 0.03 \$cent/kWh.

Savings : 131.4 M US\$ capital costs + 585 M US\$ fuel costs.

Financial drain: avoids 1.34 billion US\$ for imports

CO2 emission: reduced by 8.2% (over 3.8 Gt).

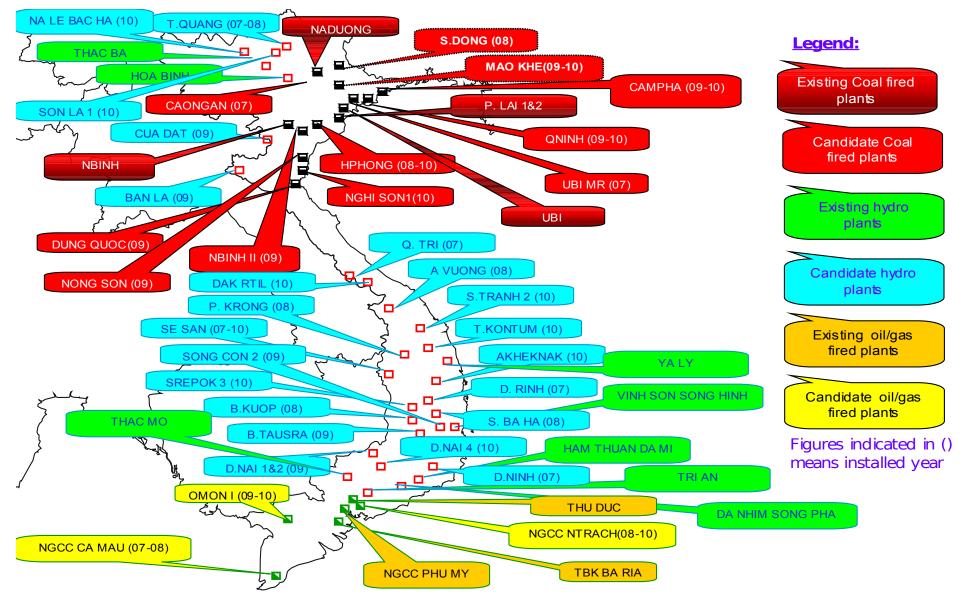
SO2, and NOx emissions: reduced by 3.1% and 4.1%.

Renewables cost- effective now

Economic potential over 2010-2030 (this IRP simulation result)

Total	370 TWh
Biomass residues	99 TWh
Geothermal	124 TWh
Small hydro	146 TWh

Conditions for other renewables


Windenters if price $\leq 900 \text{ US}/\text{kW} + \text{fuel prices high}$ Woodenters if price $\leq 1 500 \text{US}/\text{kW} + \text{fuel prices high}$ Mini hydrolimited supply, up to 4.7 GWh if high fuel pricesSolarassumed not cost-effective in the IRP

Conclusions

- Vietnam's power sector mainly relies upon fossil fuels after 2015
- Cost-competitive now: Small hydro, geothermal, biomass residues.
- Developing renewables over 2010-2030 could: improve quality of electricity supply reduce the share of coal generation by 5% (saves installing 1GW) decrease CO_2 emissions 8%, SO_2 3% and NO_X 4%, help conserve domestic natural and financial resources
- Large potential: wind power, unused land for plantation.

THANK YOU!

Power generating plants to 2010

Source: Institute of Energy of Vietnam, 2005

Characteristics of technologies

Candidate plants	Capital cost (\$/kW)	Efficiency (%)	Fixed O&M cost (\$/kW·month)	Variable O&M cost (\$/ MWh)	Emission factor (kg CO ₂ /MWh)
Conventional coal	1100	40	2.8	0.15	880
Supercritical coal	1200	43	2.8	0.15	800
IGCC coal	1300	45	3.55	0.15	704
NGCC	700	54.63	1.98	0.99	370
Steam Oil	900	43.57	1.63	1.48	730
Solar grid connected	5500	100	2.5	0	0
Wind turbine	1000-1300	100	1.35	0	0
Geothermal	1700-2000	100	2.38	0	0
Very large hydro	1120	100	0.54	0	0
Medium and large hydro	1100 - 1500	100 100	0.76 1.5	0 0	0
Small and mini hydro	1200 - 1600	100	1.5	Ū	0
Bagasse direct combustion	850	23	3.58	5	71.64
Biomass IGCC	1600	38.30	3.75	2.9	7164
Wood IGCC	1600	38.30	3.75	2.9	71.64

Fuel prices assumptions

	Scenario a	nalysis	Sensitivity analysis		
Fuel type	Fuel prices (\$/Gcal)	Escalation rate (%)	Fuel prices (\$/ Gcal)	Escalation rate (%)	
Domestic coal	5	1.5	7.142	1.5	
Imported coal	6.15	1	9.23	1	
Imported FO	28.37	2	50.66	2	
Imported DO	30.79	2	56.7	2	
Domestic gas	15.87	2	17.46	2	
Imported natural gas	18.25	1.5	23.8	1.5	
Imported LNG	22.62	1.5	27.78	1.5	
Bagasse	0.781	1	0.781	1	
Rice husk	0.71	1	0.71	1	
Paddy Straw	0.625	1	0.625	1	
Wood residue	4.4	1	4.4	22 1	

Renewable energy potential

Energy sources	Economical potential	Current development in (2005)	Remarks		
Hydro	83,5 TWh (*)		(¹) Only 2.4 GW is assumed for the paper		
Large & medium hydro (>30 MW)	18-20 GW	About 4.2 GW equivalent to 18 TWh	(²) This economical potential is assumed to be used for electricity generation only, not for		
Small hydro (<30 MW)	2-4 GW ¹	exploited from hydro energy sources at year 2006.			
Mini hydro (<1 MW)	100 MW		direct use purposes. (³) This economical		
Hydro pump storage	10.2 GW	No	potential is estimated with feed-in tariffs		
Geothermal	1.4 GW ²	No	varying from 5-7 US cent/kWh)		
Wind turbines	20 GW ³	No	(⁴) This economical potential is assumed for		
Solar grid integrated	1 GW4	No	input of IRP model (⁵) Only 250 MW is		
Rice husk	440 MW ⁵	No	assumed for the paper (⁶) Only 550 MW is		
Paddy straw	600 MW ⁶	No	assumed for the paper (⁷) Only 200 MW is		
Bagasse	300 MW ⁷	few	assumed for the paper		
Wood residue	100 MW	No	23		

« GMSARN International Conference 2009 » Ha Long Bay, Vietnam, 25-27 November 2009

The Clean Development Mechanism in Vietnam: potential and limitations

Nhan T. Nguyen^a, Minh Ha-Duong^a, Sandra Greiner^c

^aCentre International de Recherche sur l'Environnement et le Développement, CIRED-CNRS. Campus du Jardin Tropical, 45bis ave. de la Belle Gabrielle, 94736 Nogent-sur-Marne, France. Tel: +33 01 43 94 73 65 Fax: +33 1 43 94 73 70. Corresponding author: <u>nhan@centre-cired.fr</u>. ^bClimate Focus. Minervahuis III, Rodezand 34, 3011 AN Rotterdam, Netherland.

Introduction

The CDM experienced a spectacular rise of activity since mid-2005 and the opportunity window for CDM implementation has almost closed.

But, the CDM in Vietnam is used as a way below its full potential.

Even 2008 and 2009 have shown increased activity & many projects are underway, Vietnam still lags behind neighboring countries in term of submitted & registered projects.

Outline

- **1. Overview: the CDM**
- 2. Study approach and data
- 3. Vietnam & the CDM: a late starter on the global rise.
- 4. Barriers analysis: why Vietnam has not been more successful? ⇒ strategic recommendation.
- 5. Vietnam's positioning in a post-2012 environment.
- 6. Conclusions.

1. CDM: current status & prospect:

The CDM is defined in Article 12, the Kyoto Protocol :

+ developed countries: benefit from projects implemented in developing countries to offset their mandatory emissions reduction commitments.

+ developing countries: benefit from the funding through CDM projects that could assist them to reach sustainable development.

As of 6 May 2009, there are 285.5 million emissions credits issued by CDM-EB over 292 million CERs requested by host parties (UNFCCC, 2009).

current status & prospects (cont'd)

The CDM's effectiveness argued: expensive and lengthy project approval process, methodologies for calculating whether the project actually reduces GHGs,... etc?

The first commitment of the Kyoto terminates at end of 2012 & the world has been negotiating for replacement agreement.

The opportunity window for CDM implementation currently has almost closed. Anyone who is starting a project now will be too late for the deadline 2012.

2. Study approach & data

Approach: the study is based on a review of major documents as well as interviews carried out with a number of stakeholders inside and outside Vietnam.

Data sources: key documents and specific country reports, most updating online-published CDM databases (UNFCCC, UNEP Risø, IGES, CD4CDM, OECD,, Point Carbon, IDEAcarbon, Germany Trade & Invest, ... etc).

□ This was implemented in France: three oversea study voyages were carried out during 2007-2009.

3. A late start on the global rise

We can observe this late by looking at:

3.1 The country's significant potential?

3.2 Opportunities exploited so far?

3.3 How is the country lagging behind others?

4 barrier analysis \Rightarrow why Vietnam not been more successful

By looking at: international practice, lessons learnt, current status as well as interviews stakeholders in field.

Regulatory barriers

+ The institutional structure and regulatory framework: cumbersome and inefficient.

+ Delays in approval process: difficult & so long.

+ **Document submission system:** inadequate and very underdeveloped.

+ Lack of approval criteria: evaluation & approval system has lack of clear criteria per se.

+ **Provincial approvals:** a mass of difficulties to obtain the endorsement letters.

barrier analysis (cont'd)

Barriers due to business climate 🕨 + Corruption and bureaucracy: Vietnamese CDM investment climate is ranked as "average climate".

+ Tariff uncertainty: no government-incentives for pricing reflective of clean energy's extra.

Access to information: data not widely public, hardly accessible, often obtained through personal contacts & relationships but lacking official feature.

EXAMPL Content of the set of th frustration to project development.

* difficulty in communication: foreign language barrier * insufficient knowledge among local CDM participants

\Rightarrow Strategic suggestions

+ approval system to be strongly changed & streamlined to ensure righteous application process for approval letters.

+ clearer set of criteria & guidelines to be built up for evaluating projects in a common manner.

+ to cut down cumbersome capacity within the DNA by reducing the required number of participations to 50%.

+ learnt lessons from neighbors (China, India, Indonesia) in providing favorable conditions for involved parties.

+ business standards (postal-mail, electronic-email) should be legally obligated for the submission of PDDs.

+ to intensify partnerships with foreign counterparts to disseminate deep knowledge on CDM, foreign language.

5. Vietnam's positioning in a post-2012 environment

We future prospects of CDM projects for Vietnam are not clear <= unclear whether & how the CDM (or a CDM-like mechanism) will be included into a post-2012 and, if such mechanism included, how much demand & supply of carbon credits will exist in any future agreement.

5.1 Can the big players come on board if CCS is endorsed?

+ given the possibility: large-scale agreements on clean energy would be set as a priority, i.e. the inclusion of large-scale CCS technology would exist in future CDM-like mechanism.

+ Central coal (70 GW) for electricity generation by 2030. Currently, the White Tiger Field project is proposed for CDM implementation in Vietnam (IEA, 2008). This is likely to become the 1st commercial CCS project in Asia. Thus, the adoption of CCS technology would be not an implausible possibility.

 \Rightarrow the only question arisen is can the big players like EVN come on board if CCS is endorsed?

5.2 if a wider set of climate policies included towards climate goals

Vietnam (large CDM potential) would gain greater opportunities \Rightarrow Vietnam should do streamlining of CDM procedure focusing on plentiful endowed resources of renewables, especially small hydropower.

This fast-track procedure should be as standardized as possible, especially standardized emission reduction baselines, in order to facilitate and speed-up the assessment of small-scale projects.

6. Conclusion

+ We have shown that Vietnam is a *late-starter on the global rise* of CDM even having very big potential.

+ The barrier analysis outlined the ways facilitating the CDM but it is not methodically efficient enough to complete successful projects in Vietnam.

+ Climate mitigation is not yet considered a strategic priority in the long-term economic development plan. If nothing is changed, it is unlikely that a success of expanded CDM or other CDM-like mechanism occurs.

+ Policy measures available for a stronger strategy, consistent with general goal of improving the country's investment climate by *reducing red tape (bureaucracy, cumbersome regulation),& fighting corruption.* 14

"turning the climate challenges into sustainable development opportunities for Vietnam"

the end!

3.1 Country has a significant potentia

Large potential for implementation of CDM projects

+ Due to growing energy needs, highly inefficient energy usage, an ample potential for renewables \Rightarrow enormous opportunities for developing CDM projects.

+ Most potential sectors: renewables (dominated by hydropower, wind energy), waste, waste water treatment, fossil fuel switching, energy efficiency, etc.

How big potential? \Rightarrow **for further ref:** Nguyen and Minh Ha-Duong, 2009 "Economic potential of renewables" Energy Policy; Nguyen and Minh Ha-Duong, 2009 "Potential for CO2 mitigation in Vietnam" (IAEE Conference, other international Conferences in France, Germany & the 5th International Academy, to be published through Lexxion Verlag, Berlin).

significant potential (cont'd)

The country has no shortage of CDM buyers

+ Most buyers are from foreigners. Japanese companies are first buyers & most dominant group.

+ Project entities dealing with European compliance buyers. The country cooperated with JBIC, Austrian Ministry of Agriculture, Forestry, Environment.

Available supports from CDM partnership agreements

+ Many partners from Austria, Japan, Germany, Denmark..., etc on climate change issues.

+ Supports from international organizations: the UNEP, AIT, GTZ, etc for local capacity building. 18

■ 3.2 How opportunities exploited

+ Growth of projects (at validation) in Asia & Pacific:

2004	2005	2006	2007	2008	1 st quarter of 2009
13	265	449	994	1198	709

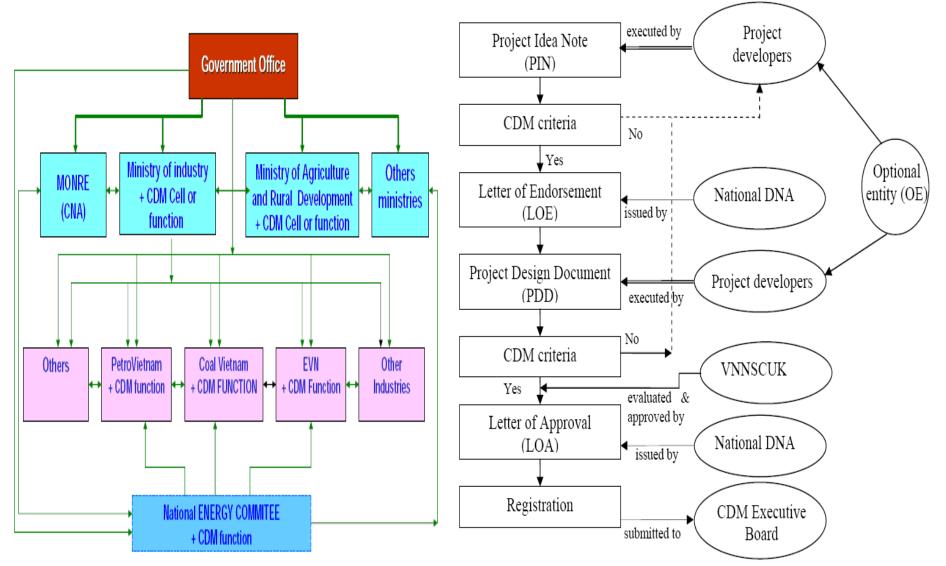
+ The first commitment expires end of $2012 \Rightarrow$ the opportunity window for CDM projects closes very soon.

+ *121 hydro run-of-river projects* around the world registered as of 6/2008, expected to generate about 10 Mt CO₂ reduction annually over 2008-2012.

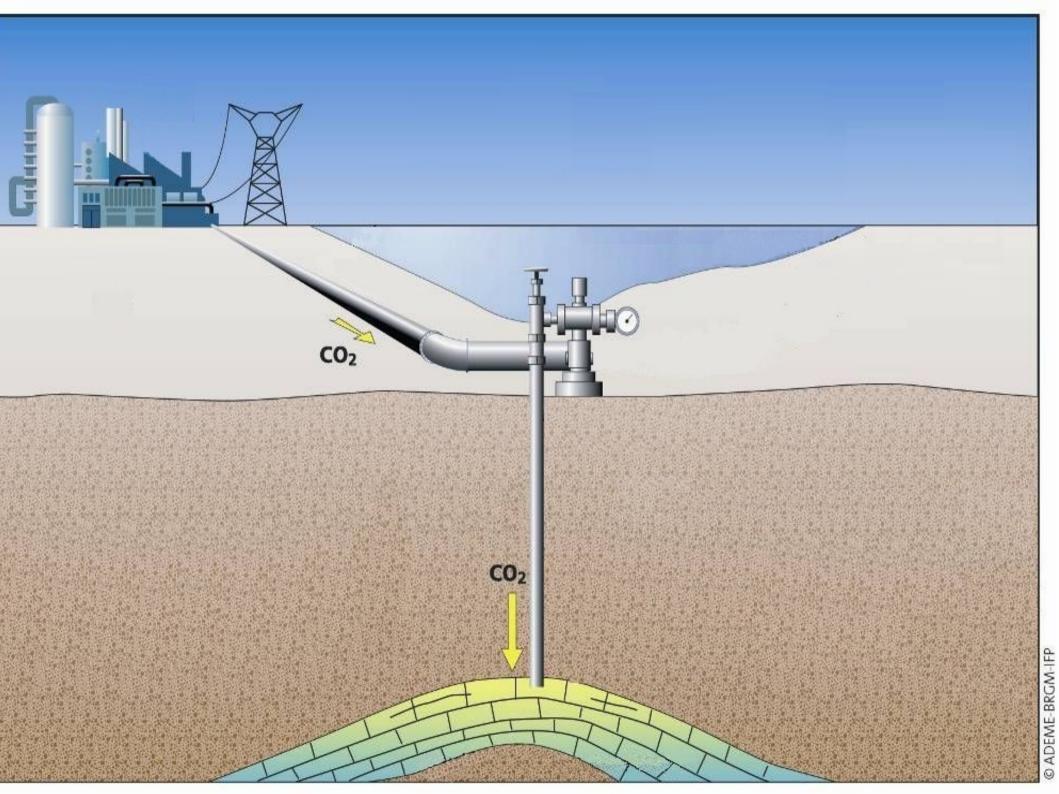
 \Rightarrow Given the situation: until 6/5/2009 only 4 projects registered: large-scale Rang Dong gas flaring reduction, only one small-scale 2 MW hydropower, Landfill gas, Binh Thuan wind farm. 19

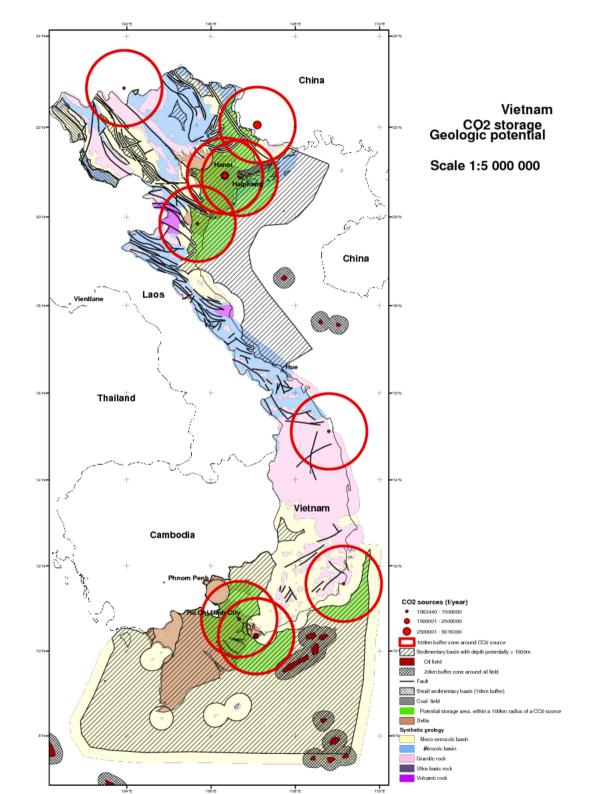
■ 3.3 How the country is lagging? ⇒ at *lower end of countries in region*, just > other lowincome countries: Cambodia, Lao PDR, Mongolia, in *submitted & registered projects.*

		Re	egistered to CDM EB		O thers [*]	Rejected
Country	submitted to UNFCCC	Total projects	Expected average annual reductions (tCO2eq)	Under validation		
Cambodia	9	4	124,356	5	0	0
China	2,666	537	173,090,792	1,993	119	17
India	1,982	422	34,662,458	1,491	32	37
Indonesia	155	24	3,337,551	128	2	1
Lao PD.	2	1	3,338	1	0	0
Malaysia	237	45	3,096,701	183	5	4
Mongolia	7	3	71,904	4	0	0
Philippines	124	27	1,367,251	95	1	1
Rep of Korea	112	26	14,737,147	81	3	2
Singapore	9	1	15,205	8	0	0
Sri Lanka	35	5	152,884	27	0	3
Thailand	151	16	1,189,114	132	2	1
Vietnam	89	4	886,912	79	5	1


* Total projects are requesting registration, review requested, under or following review, micro corrections or corrections following request for review

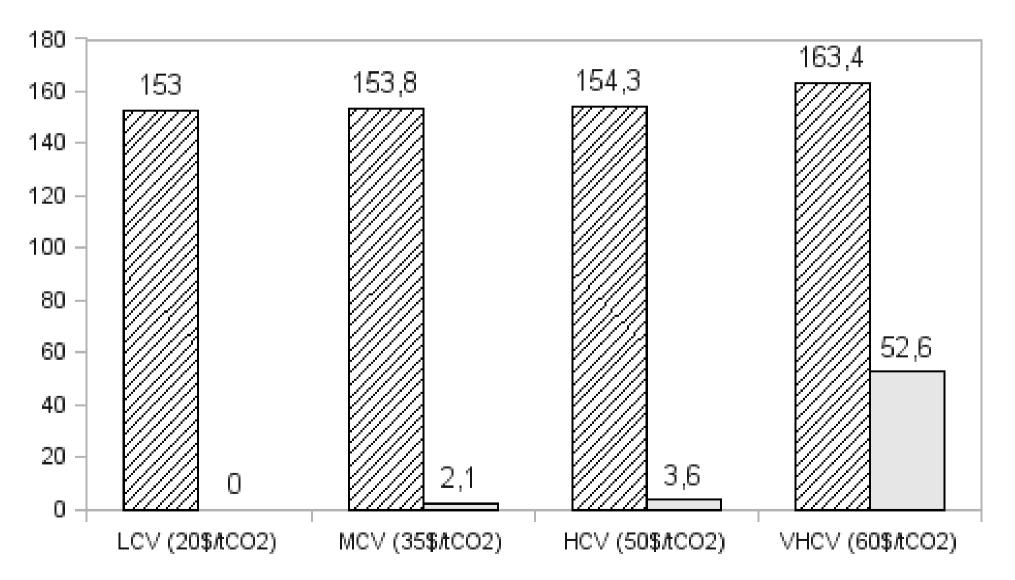
CDM investment climate index in Asian region by April **⊇**009


Rank	Country	CDM ICI (max 100 points)	Regional classification
1	Malaysia	91.7	Very good climate
2	Korea (Rep)	90.2	Very good climate
3	Thailand	83.7	Good climate
4	China	83.3	Good climate
5	India	80.7	Good climate
6	Indonesia	80.1	Good climate
7	Philippines	79.5	Good climate
•••	•••	•••	
25	Vietnam	54.4	Average climate
•••			
			21


Source: DEG- Deutsche Investtions and Entwicklungsgesellschaft mbH cited by Germany Trade & Invest.

CDM institutional structure and host country approval procedures

Potential of Carbon Capture and Storage at Vietnamese power plants in 2040



Scenario				
CO ₂ value in 2040 (\$/tCO ₂)	\$20	\$35	\$50	\$60
-critical Coal with CCS		2		
Coal with CCS			2	36
Coal with CCS				28
Gas with CCS		2	4	4
number of power plants with CCS		4	6	68

Power generation capacity (GW) in Vietnam, 2040 for different CO2 value target

🖾 Total 🔲 with CCS

