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Executive Summary

TheCIRED.digital project successfully demonstrated the feasibility of deploying an artificial intelligence
system for accessing the laboratory’s scientific publications. Over a five-month period (April–October
2025), the project team developed, tested, and deployed a retrieval-augmented generation (RAG) digital
librarian — rather than a general-purpose chatbot — providing natural-language access to the Centre
International de Recherche sur l’Environnement et le Développement (CIRED) knowledge.

Project Scope and Outcomes

The project pursued these objectives: (1) deploying a functional natural language interface to CIRED’s
publications for non-experts; (2) implementing a technically robust architecture supporting service
continuity open to public access, without user authentication; (3) contributing replicable open-source
tools enabling other research institutions to deploy similar systems; (4) ensuring ethical compliance
including user privacy protection and transparent citation mechanisms; (5) evidence-based learning on
usage patterns and costs to inform decision-making and (6) Internal capacity building on AI technology.

The system underwent three distinct phases: initial development (April–May 2025), integration and
user testing (May–June 2025), and public deployment with monitoring (June–October 2025). All ob-
jectives were substantially achieved within the project timeline and budget constraints, though data
collection limits disallows statistical analyses. The system provides access to approximately 1 238
CIRED publications from HAL. The project’s environmental footprint (3–4 kg CO₂ for 96 days) demon-
strates sustainability comparable to conventional literature access methods, while operational costs
(€50–200/year) remain accessible to research institutions with modest budgets.

Key Findings

The system attracted 259 unique sessions over 96 days of public availability, generating 1,849 docu-
mented events from 290 user queries. Users represented diverse constituencies including researchers,
students, science communicators across CIRED partner institutions and the general public. Query
patterns revealed strong demand for publication search, research synthesis, and methodological infor-
mation. Identifed priorities for future enhancement including multi-turn discussion and extending the
knowledge base.

Main Recommendations

The project recommends: (1) continued system operation for 12 months; (2) transition to institutional
hosting infrastructure to reduce costs and ensure data sovereignty; and (3) dissemination of findings to
the research community through publication and workshop engagement. Detailed recommendations
for CIRED leadership, other research institutions, and the broader research community are provided in
the conclusion.

Deliverables

This report completes all core deliverables:

• Open-source code published on GitHub at https://github.com/CIRED/cired.digital un-
der the CeCILL-B license.

• The GitHub repository includes the anonymized usage dataset prepared for archival.

• Technical implementation report documenting architecture and technology choices is summa-
rized in this report and detailed in the GitHub repository.

• Cost, environmental impact and usage analysis is provided in this report.
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1 Introduction

1.1 Context and Motivation

The rapid expansion of scientific literature creates unprecedented challenges for researchers, practi-
tioners, and policy-makers seeking timely and relevant information. Traditional search interfaces and
bibliographic databases provide reliable access to publication metadata and full texts, but they offer
limited support for exploratory queries that require synthesizing insights across multiple documents.
The emergence of large language models (LLMs) and retrieval-augmented generation (RAG) systems
opens up new possibilities: interfaces capable of answering natural-language queries while grounding
their responses in authoritative scientific publications.

The landscape of AI-assisted science mediation has evolved considerably in recent years, spanning
applications from literature-surveying assistants to domain-specific chatbots. Yet most existing tools
target individual researchers or broad scientific audiences; far fewer have been deployed in institutional
research settings, where organizations can directly assess real-world usage and evaluate the benefits,
risks, and costs of such systems.

Beyond its technical function of improving the factual reliability of LLMs, RAG is increasingly
recognised as a mechanism for advancing open science. By coupling retrieval from verified scientific
sources with the generative capacities of modern multilingual models, RAG can transform scholarly
articles into answers to questions expressed in multiple languages and at varying levels of technical so-
phistication. This ability to produce grounded, accessible explanations directly from scientific literature
addresses two long-standing barriers to inclusive knowledge dissemination: the dominance of English
as the primary language of research and the high degree of specialization characteristic of academic
writing. In this sense, RAG serves not only to align generative models with curated corpora, but also
to enhance the societal reach and usability of scientific knowledge.

CIRED (Centre International de Recherche sur l’Environnement et le Développement)—a joint CNRS
research unit in partnership with AgroParisTech, EHESS, CIRAD, and Ponts ParisTech—maintains a
substantial and heterogeneous body of scientific publications. Its open-access collection includes ap-
proximately 1,238 peer-reviewed articles available through the HAL repository. CIRED also has col-
lected 1,249 additional historical publications, many of which are not yet catalogued in centralized bib-
liographic infrastructures – these were not used in the project. Together, these documents trace fifty
years of research at the interface of environment and development, encompassing diverse methodolog-
ical traditions and policy perspectives.

This project provides an opportunity to design, deploy, and evaluate a retrieval-augmented digital
librarian (not a general-purpose chatbot) specifically tailored to CIRED’s publication corpus, while also
contributing to open science by developing tools that other research institutions can readily reuse.

1.2 Project Objectives

Figure 1 illustrates the project goal: Build a semantic What do CIRED publications say on...
search-and-generate interface, instead of the classical keyword-based search interface available for ex-
ample at https://hal.science/CIRED/.

Beyond the technical demonstration, the project seeks to analyse usage patterns, cost structures,
environmental impacts, and user engagement in order to inform institutional decisions regarding the
long-term deployment and scaling of such systems. To this end, the project pursued six complementary
objectives, spanning technical implementation, institutional applicability, and open science contribu-
tions:

1. Functional Natural Language Access for Non-Experts: Deploy an interface enabling users—
particularly non-specialists—to query CIRED’s publications and obtain grounded answers sup-
ported by precise citations and contextual excerpts.
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(a) Classical HAL keyword-based search interface
(b) CIRED.digital RAG-based natural language inter-
face

Figure 1: Comparison between CIRED’s existing HAL search interface and the RAG-based natural lan-
guage query interface developed in this project. The RAG interface allows users to pose questions in
natural language and receive synthesized answers grounded in specific publications (see cover illustra-
tion).

4



2. Robust and Sustainable System Architecture: Implement a technically reliable, scalable, and
maintainable RAG architecture capable of ensuring service continuity and supporting open public
access under realistic institutional constraints.

3. Replicable Open-Source Tooling: Develop fully open-source components, workflows, and doc-
umentation enabling other research institutions to replicate and adapt the system to their own
HAL collections or comparable scholarly repositories.

4. Ethical, Transparent, and Privacy-Preserving Operation: Ensure compliance with ethical and
legal requirements by implementing strong privacy protection mechanisms, anonymous session
handling, GDPR-aligned data practices, and transparent citation and traceability mechanisms for
AI-generated outputs.

5. Evidence-Based Institutional Learning: Collect and analyse detailed metrics on usage patterns,
performance, reliability, computational costs, and environmental impacts to support informed
institutional decision-making regarding long-term deployment, scaling, and sustainability.

6. Capacity building: Ensure CIRED staff and researchers stay up to date on AI technologies.

Beyond these specific objectives, the project aims to contribute to the ongoing debate on the re-
sponsible and effective integration of AI systems within research institutions.

1.3 Methodology Overview

The project was organized into three sequential phases, each with defined objectives and deliverables:

Phase 1: Development (April–May 2025) Initial implementation of the RAG system architecture, in-
cluding data ingestion from HAL, integration of multiple RAG engines, frontend development,
and preliminary internal testing. This phase emphasized rapid prototyping and identification of
key technical requirements.

Phase 2: Integration and Testing (May–June 2025) Expansion of testing to external users, systematic
evaluation of interface usability, performance benchmarking across engines, and identification
of improvements based on qualitative and quantitative feedback.

Phase 3: Deployment and Evaluation (June–October 2025) Progressive deployment (closed and then
open beta) to broader audiences, continuous monitoring of performance and usage patterns,
tracking of compute costs and environmental impacts, and comprehensive analysis of user en-
gagement to support long-term sustainability planning.

Throughout all phases, the project emphasized reproducibility, transparent documentation of ar-
chitectural decisions, and the development of reusable tools suitable for other research institutions and
HAL-based collections. Attention was also given to communicating system limitations, computational
costs, and environmental impacts, in line with open science principles and institutional commitments
to research integrity. The complete codebase has been published under open-source license on GitHub,
and anonymized usage datasets have been prepared for archival deposit. While HAL provides the pri-
mary corpus source, it captures an incomplete record of CIRED’s 50-year research production. This
project demonstrates RAG capabilities using available open-access materials, with corpus expansion
representing a natural evolution pathway.
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2 Literature Review

2.1 Retrieval-Augmented Generation (RAG) for Scientific Workflows

Large languagemodels (LLMs) pre-trained onweb-scale corpora have rapidly entered research practice,
but raise familiar issues: hallucinations, outdated knowledge, and limited access to domain-specific in-
formation. Retrieval-augmented generation (RAG), formalised by Lewis et al. [2020], addresses this by
pairing a retriever (selecting relevant documents from an external knowledge base) with a generator
conditioned on the retrieved passages. As IBM Research summarises, “RAG allows LLMs to build on
a specialized body of knowledge …it’s the difference between an open-book and a closed-book exam.”
Systematic reviews document RAG’s development since 2020, highlighting technical diversity and rel-
evance for knowledge-intensive scientific tasks [Brown et al., 2025, Murtiyoso et al., 2025, Arslan et al.,
2024, Han et al., 2024].

2.1.1 RAG Architectures and Methodological Foundations

Early RAG research in NLP and information retrieval focused on architectural variants and evalua-
tion. Surveys commonly decompose RAG into three design spaces: (i) retrieval (dense vs. sparse, hy-
brid search, re-ranking), (ii) integration (prompt concatenation, fusion-in-decoder, retrieval-augmented
adapters), and (iii) supervision (fully supervised QA to weak/self-supervision) [Brown et al., 2025, Gao
et al., 2024]. RAG has since evolved from “Naive” to “Advanced” and “Modular” paradigms, with ap-
proaches such as GraphRAG (knowledge-graph structured context) and Agentic RAG (iterative query
refinement). Across benchmarks, factual accuracy improves when retrieval quality, index construction,
and prompt structuring are well controlled.

A parallel literature examines domain-specific RAG. Murtiyoso et al. [2025] review applications
in healthcare, energy, manufacturing, and construction, concluding that RAG improves answer qual-
ity when corpora are well curated, while increasing demands for corpus preparation, evaluation, and
access-right management. Reviews in education and healthcare echo this pattern: retrieval strengthens
alignment with authoritative sources but shifts responsibility toward curation and bias control.

Frontier scientific systems such as PaperQA2 [Agarwal et al., 2024, Lála et al., 2024] emphasise
citation accuracy and epistemic humility. On LitQA (questions from literature beyond training data),
PaperQA2 achieved performance “comparable to human experts” while being “significantly cheaper
in terms of costs,” and more often answered “unsure” rather than giving incorrect information. Key
features include metadata-aware embeddings, LLM-based re-ranking and contextual summarisation,
and citation retrieval with retraction checking. This reflects a central principle for scientific RAG:
prioritise fidelity to sources over conversational fluency.

2.1.2 RAG for Literature Discovery, Screening, and Synthesis

RAG is increasingly applied to literature discovery, screening, and synthesis. Han et al. [2024] propose
a multi-modal, multi-source RAG framework for systematic literature reviews (SLRs), where retrieval
supports query expansion, study screening, data extraction, and trend identification. They report po-
tential reductions in manual workload while stressing expert oversight and transparent reporting.

Open-source tools operationalise these workflows. PaperQA2 supports citation-aware QA over sci-
entific papers, while LitLLM supports RAG-assisted drafting of related-work sections via vector search
on PDFs and structured summarisation templates. A 2025 survey of educational RAG chatbots identi-
fied 47 publications, with the most common use case being “access to source knowledge” [Dąbrowski
et al., 2025]. More generic “literature RAG assistants” (often in blog posts and technical reports) typi-
cally index PDF collections, enable semantic search over titles/abstracts/full text, and generate answers
or concept maps grounded in retrieved excerpts.

These systems enable scalable exploration, clustering and thematic organisation, and evidence-
grounded summarisation, but synthesis brings distinctive risks. Modersohn et al. [2025] found that
LLM-generated summaries were “twice as likely to contain generalized conclusions compared to the
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original abstracts”. Overgeneralisation was particularly pronounced with accuracy-focused prompts,
suggesting that requesting accuracy can still yield systematic drift. Additional risks include synthesis
hallucinations (conflating sources) and false impressions of completeness. Mitigation requires human-
in-the-loop workflows, transparent citations, and explicit documentation of retrieval coverage and rel-
evance thresholds.

2.2 RAG for Scientific Communication and Open Science

This section frames RAG as an open-science mechanism: improving access, reducing barriers, and
supporting more equitable knowledge distribution.

2.2.1 Multilingual Access and Global Knowledge Equity

Scientific communication faces two structural barriers: English dominance and the complexity of aca-
demic writing. In PLOS Biology, Amano et al. [2016] report that 35.6% of scientific documents are
published in languages other than English, yet are often invisible to global synthesis; simultaneously,
54% of protected area directors in Spain identified language as a barrier to accessing science. This dual
problem motivates multilingual RAG.

Multilingual question answering studies suggest grounding improves factual consistency when an-
swers are generated in a different language than the source document. Rather than translating whole
articles (costly and potentially inconsistent), RAG retrieves relevant passages and generates faithful
answers in the user’s language. However, multilingual RAG (mRAG) remains understudied: an evalua-
tion across 13 languages found multilingual generation to be “the weakest part of the mRAG pipeline,”
with code-switching and degraded performance in mixed-language contexts [Rau et al., 2024]. While
promising for low-resource languages, uneven performance risks reproducing inequities.

These findings align with UNESCO’s 2021 Recommendation on Open Science, which emphasises
multilingual and accessible dissemination. Similar science–policy communication gaps are recognised
by the IPCC, where policymakers in non-Anglophone regions often lack timely access to technically
faithful translations. Initiatives such as Europe PMC’s multilingual patient-friendly summaries [Europe
PMC, 2024] illustrate how RAG can expand access across languages and expertise levels.

Climate science has emerged as a particularly active domain for RAG-based knowledge access tools.
ChatClimate.ai, developed by Vaghefi et al. [2023], exemplifies the domain-specific RAG approach by
grounding GPT-4 in the IPCC Sixth Assessment Report (AR6). The system was evaluated across three
configurations—standalone GPT-4, ChatClimate (relying exclusively on IPCC AR6), and a hybrid ver-
sion combining both knowledge sources—with IPCC authors assessing answer accuracy on a five-point
scale. Results showed that the hybrid configuration provided more accurate and better-referenced re-
sponses, demonstrating the value of retrieval augmentation for preserving source fidelity and confi-
dence levels in climate communication.

Building on such implementations, Al Khourdajie [2025] develops operational and governance
frameworks for integrating AI tools into IPCC processes, addressing both evidence synthesis and report
communication. The essay distinguishes between “addressable” limitations of LLMs (such as halluci-
nations, which RAG architectures can mitigate) and “inherent” limitations requiring governance solu-
tions rather than technical fixes. Al Khourdajie identifies ChatClimate.ai and ClimateQA as examples
of climate-focused chatbots that use sophisticated prompt engineering and automated fact-checking to
constrain outputs, while emphasising that such tools must operate within robust governance frame-
works to ensure scientific integrity. These developments suggest that RAG systems for climate knowl-
edge may serve as templates for other policy-relevant scientific domains where authoritative assess-
ment reports exist.

2.2.2 Retrieval-Grounded Simplification for Non-Expert Audiences

Evidence from science communication suggests retrieval grounding reduces semantic drift during sim-
plification. In PNAS Nexus, Markowitz [2024] compare human-written lay summaries with GPT-4 sum-
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maries of the same abstracts: AI outputs substantially increased linguistic simplicity, and participants
perceived the described scientists as more credible and trustworthy. Biomedical work similarly reports
that RAG-based patient-friendly summaries can be more accurate and readable than author abstracts
or ungrounded LLM outputs. Related effects appear in education and environmental communication,
where selective retrieval helps preserve alignment with underlying evidence while adapting style and
vocabulary for non-experts.

Risks remain: simplified language can mask uncertainty, and retrieval gaps can yield incomplete
syntheses. As NIH and EU policy increasingly mandates plain-language summaries, RAG should be
positioned as one tool within a broader ecosystem of translation, curation, and review rather than a
complete solution.

2.2.3 RAG against the paywalls

Can RAG reduce access barriers by answering questions from closed-access literature via short, cited
excerpts? French copyright law permits citation of short excerpts for criticism, review, or news report-
ing (Article L122-5 of the Intellectual Property Code), providing a legal basis for compliant quotation.
In principle, RAG can ground answers in paywalled corpora while limiting outputs to brief excerpts,
potentially reducing reliance on subscription databases.

This raises boundary questions between lawful quotation and systematic circumvention. Individual
queries may fit citation practices, but large-scale deployments that reconstruct substantial protected
content across many answers may infringe exclusive distribution rights. Publishers have responded
with technical and legal challenges, and the legal landscape remains unsettled, with debates over fair
use, derivative works, and infringement depending on implementation and usage patterns.

This democratisation narrative also intersects with sustainability: RAG improves access for in-
dividuals but does not, by itself, replace the economic models that fund peer review and publishing
infrastructure. More durable pathways may include open-access mandates, repository expansion, and
collective negotiation with publishers.

2.3 Challenges and Opportunities for Research-Grade RAG Systems

2.3.1 Challenges

Across the literature, persistent challenges arise when RAG is deployed in research settings.
Technical and Epistemic Challenges
Retrieval robustness remains difficult in real-world corpora. Coverage gaps (missing or unindexed

documents) produce incomplete answers, while heterogeneous metadata (mixing preprints, published
articles, reports, and grey literature) complicates indexing and retrieval. Domain-specific terminol-
ogy and acronyms (e.g., IMACLIM-R, IPCC scenarios) may be poorly captured by generic embeddings.
Mixed-language retrieval can introduce name-handling errors, especially for non-Latin scripts.

Citation accuracy is a central epistemic concern. Even with retrieved passages, the link between
evidence and generated claims can be loose: models may cite relevant documents for statements not
directly supported by the cited passages. Provenance tracking becomes more important as synthetic
or low-quality documents enter corpora alongside peer-reviewed material. Moreover, retrieval aug-
mentation “does not prevent hallucinations in LLMs…the LLM can still hallucinate around the source
material in its response.” RAG reduces but does not eliminate unsupported generation.

Evaluation remains under-specified for research contexts. Many studies report QA benchmark
improvements, but fewer assess source faithfulness, citation accuracy, or downstream impacts on re-
searcher decisions. Developing discipline-specific evaluation frameworks beyond BLEU or exact-match
scores is an open challenge. Socio-technical methods combining technical metrics with qualitative stud-
ies of real usage remain rare but essential.

Equity, Governance, and Sustainability
Infrastructure disparities persist between cloud RAG services (often accessible towell-funded teams)

and local, self-hosted deployments (requiring compute and expertise). Language inequities also persist:
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most development focuses on English and resource-rich languages. Corpus governance raises questions
about mixing open-access materials with subscription content or sensitive datasets, including licensing,
access control, update frequency, and stewardship.

Responsibility for errors in institutional deployments is often unclear. If an institutional RAG sys-
tem generates an inaccurate citation, who is accountable? What protections exist against malicious
reuse of AI-generated scientific communication? These governance questions are particularly salient
in policy-relevant fields (e.g., climate change), where reputational risks and adversarial misuse are sig-
nificant.

Misattribution risks are not merely hypothetical. In July 2003, the software Marlowe—un “socio-
logue numérique” developed by Francis Chateauraynaud and Jean-Pierre Charriau at EHESS for auto-
mated corpus analysis and dialogue with researchers—autonomously signed an online petition calling
for the liberation of José Bové. When the petition organiser (Michel Meuret, INRA) questioned this un-
usual signatory, Marlowe responded without clarifying whether it represented a human or a machine
[Le Canard enchaîné, 2003, Desbordes, 2018]. Reported in Le Canard enchaîné, the incident illustrates
how outputs from research-oriented AI systems can escape their intended context and be interpreted
as authentic human contributions—a risk amplified by LLMs’ fluent, authoritative prose.

2.3.2 Research Infrastructures responses to RAG challenges

Institutional deployments increasingly embed RAG within broader research data ecosystems, shifting
from isolated tools to integrated services co-designed with research communities. In France, this trend
is spearheaded by the national research infrastructure Huma-Num and by the Université de Rennes.
CNRS recently revealed a national agreement with Mistral, allowing French researchers to access
LeChat under an Enterprise license which allows them to upload their own documents for grounded
responses.

ISIDORE: Embedded RAG in Data and Metadata Infrastructures
The ISIDORE 2030 programme aims to modernise the isidore.science academic search engine by in-

corporating “IA génératives pondérées,” including RAG, for tasks such as content analysis, dashboard
creation, summarisation, translation, and community exploration [Pouyllau, 2024a]. Here, RAG com-
plements existing indexing, enrichment, and visualisation pipelines, aiming to reduce hallucinations
and align outputs with curated SHS metadata.

This embedding highlights a key insight: RAG effectiveness depends not only on retrieval algo-
rithms but also on metadata quality and consistency. Rich bibliographic information, structured key-
words, and disciplinary classifications improve grounding; heterogeneous or poorly curated corpora
degrade performance and increase hallucinations.

HN lab: Institutional Experimentation and Service Ecosystems
Pouyllau [2024a,b] describe how the Huma-Num Lab (HN Lab) has documented experiments mov-

ing from prototypes toward infrastructure. A hackathon on RAG in SHS explored heterogeneous hu-
manities corpora while foregrounding evaluation, transparency, and sustainability challenges. In par-
allel, Pouyllau [2025] report a full RAG web application for exploring researchers’ working documents,
from ingestion and vector indexing to deployment, emphasising bibliographic discovery and citation
tracking.

These efforts align with a broader Huma-Num strategy to provide GPU-based environments and
pre-configured RAG templates [Pouyllau, 2024a, Pouyllau and collaborators, 2024a,b]. Reflective analy-
ses suggest even imperfect RAG outputs can have heuristic value by exposing gaps or inconsistencies in
corpora [HN Lab, 2024, Pouyllau, 2024a]. Overall, Huma-Num illustrates a shift toward infrastructure-
level RAG co-designed with communities and embedded within reproducibility, versioning, and stew-
ardship workflows.

University-Level RAG Deployments
The Université de Rennes provides a model of institutional deployment with RAGaRenn, a con-
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trolled, pedagogical alternative to commercial chatbots.1 Built on open-source components (Open
WebUI, vLLM, Ollama) and hosted on the Eskemm Data datacenter, it offers fine-grained control of
data flows and measurement of energy consumption, reflecting a commitment to “sober” AI uses. Its
RAG layer enables teams to specialise models on document corpora (e.g., shared knowledge bases for
course materials and virtual tutors integrated into Moodle via a K2R2 layer). Governance is framed
by a presidential circular and overseen by the vice-president for digital, with staff workshops on risks
and boundaries. With hundreds of regular users and ongoing work on energy-efficient model selec-
tion, RAGaRenn exemplifies co-construction balancing pedagogy, data sovereignty, and environmental
accountability.

2.4 Conclusion: where Cired.digital fits in?

Against this backdrop, the CIRED.digital project sits at the intersection of scientific RAG, infrastructure
embedding, open science objectives, and responsible institutional deployment.

RAG Architecture and Scientific Fidelity. Like PaperQA2 and related scientific RAG systems,
CIRED.digital prioritises citation accuracy and epistemic humility. It implements hybrid retrieval (se-
mantic + lexical), supports multiple LLM providers for cost–performance trade-offs, and provides trans-
parent citations linking answers to source passages. Unlike PaperQA2 (designed for arbitrary paper
collections), CIRED.digital targets a fixed, institutionally curated corpus with rich metadata, enabling
tighter integration with bibliographic information.

Infrastructure Integration and Institutional Embedding. CIRED.digital aligns with infrastructure-
level deployments (ISIDORE 2030, Huma-Num) by embedding RAG within research data ecosystems
rather than offering an isolated tool. It leverages HAL’s open-access infrastructure, uses open-source
components for reproducibility, and adds monitoring/analytics to support stewardship. This reflects
the broader lesson that RAG performance depends as much on metadata quality and corpus curation
as on retrieval algorithms.

Open Science and Inclusive Knowledge Access. CIRED.digital operationalises multilingual access
by accepting queries in French, English, and Arabic and generating grounded answers from CIRED’s
French and English publications. This addresses both sides of the equity challenge: making non-English
research more visible and making technical research more accessible locally. Open-source code, trans-
parent citation, and anonymised usage datasets support replicability and responsible deployment.

Responsible Deployment and Sustainability Constraints. Like RAGaRenn, CIRED.digital follows
a European model emphasising data sovereignty, privacy-by-design, and environmental accountabil-
ity. Hosted on European infrastructure (Hetzner Cloud, Helsinki), it tracks computational costs and
energy use. Its smaller scale (a single laboratory) enables detailed monitoring and iterative refinement
under realistic cost constraints, providing empirical grounding for governance and sustainability issues
highlighted in the literature.

Evidence-Based Learning and Institutional Decision-Making. CIRED.digital is designed to gener-
ate evidence about real-world institutional RAG use: it documents usage patterns, query types, engage-
ment, costs, and limitations, directly addressing the evaluation gap. With 259 sessions, 290 queries, and
monitoring over 96 days, it provides concrete data on what works, what fails, and what sustainability
pathways may be viable.

In sum, CIRED.digital is a research-grade RAG pilot embedded in public research infrastructure,
combining technical rigour with open-science objectives, user feedback, ethical compliance, and sus-
tainability constraints. By linking RAG techniques to practical organisational and governance require-
ments, it helps bridge the gap between promisingmethods in the literature and responsible institutional
adoption.

1https://ragarenn.eskemm-numerique.fr/
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3 Technical Implementation

3.1 System Architecture

The CIRED.digital service uses a containerized architecture deployed using Docker.
The system is organized around an open-source RAG engine that integrates document indexing,

retrieval, and generation: R2R2. The choice of R2R was motivated by its functional maturity and on-
line deployment model. The R2R stack includes PostgreSQL with the pgvector extension for semantic
vector storage andHatchet for workflow orchestration. We disabled R2R’s logging, named entity recog-
nition and knowledge graph, and agentic reply and web-search components, which would have added
complexity without proportionate benefits for CIRED.digital’s scale and use case.

We integrated four components around the RAG engine: data ingestion and preparation (intake),
user-facing interface (frontend), monitoring (monitor), and analytics (analytics). Architecturally,
the system maintains a clear separation of concerns: the RAG engine handles retrieval and generation;
a custom FastAPI/Uvicorn backend tracks user interactions and provides monitoring endpoints; the
frontend communicates with both the R2R API and the analytics Nginx backend; and a dedicated Nginx
Proxy Manager routes requests. Both data ingestion and analytics are performed offline, outside the
server – there is no dashboard as CIRED.digital is an exploratory project, not a product.

3.2 Data Ingestion and Processing

There is no consolidated, comprehensive archive of CIRED publications. Sources include:

1. TheCIRED collectionwithinHAL (Hyper Articles en Ligne), France’s national open-access repos-
itory, which currently contains 1,332 full-text documents (this number will have increased by the
time of writing).

2. The ISTEX repository returns 210 documents from subscription journals. This complements the
HAL collection, although some paywalled articles are in fact available as preprints.

3. Activity reports list publications metadata but do not provide full text.

4. CIRED physical archives. Most have been digitized.

5. These digitized archives amount to 25 GB of historical publications from 1970–2013 (1,991 files),
representing work from foundational researchers including Ignacy Sachs, Olivier Godard, and
Jean-Charles Hourcade. These are not all currently indexed, but a significant fraction has been
indexed [Pottier, 2024].

CIRED.digital uses the HAL collection (1238 after filtering and deduplicating). Although it is not
historically complete, it is the reference open-access source and easily available through the API. Other
repositories could supplement the corpus with older materials and subscription-based publications, but
given the project timeline and resource constraints, these sources were deferred to future expansions
of the indexed corpus.

Table 1 shows the breakdown of HAL-CIRED documents by type. We did not deduplicate by con-
tent, only by HAL ID, title, and DOI. Note that different document types have different structures and
lengths, which may affect retrieval quality. For example, theses are typically much longer and more
detailed than conference papers.

The data pipeline consists of two principal stages: preparation and ingestion. Preparation includes
the catalog retrieval, document download, filtering, and upload steps, performed from a local machine.
Ingestion is done on the RAG system, including the text extraction, chunking, vectorization and storage
steps.

2R2R stands for RAG to Riches and is at https://github.com/SciPhi-AI/R2R
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Table 1: Documents in CIRED.digital: HAL-CIRED full-text documents (before filtering and deduplica-
tion for ingestion)

Document type Count %

Journal articles 648 49%
Preprints / Working papers 206 15%
Conference papers 106 8%
Reports 84 6%
Theses 80 6%
Other (chapters, books, etc.) 208 16%

Total 1,332 100%

Preparation: The preparation pipeline includes a command-line tool (query.py) that queries the
HALAPI incrementally tomaintain synchronizationwith newly published articles. Retrieved documents—
predominantly PDF with some multimedia—are downloaded using download.py with pagination to
avoid server overload. A metadata cleanup module (prepare_catalog.py) filters oversized files and
performs deduplication. Documents are uploaded to the R2R server using push.py alongwithmetadata
(title, citation, abstract, publication date, DOI, HAL ID, document type). A verification tool (verify.py)
confirms successful indexing.

Ingestion: Once received by R2R, documents are processed to extract text and chunked using recur-
sive chunking: text is split at paragraph or sentence boundaries, recursively subdividing until chunks
are below 512 tokens, with 50–100 token overlap. This preserves contextual information while enabling
efficient retrieval of relevant passages. Chunks are represented as dense vectors through an embedding
model, enabling semantic similarity search. The R2R backend persists indexed data in PostgreSQL with
the pgvector extension, supporting both vector similarity and traditional database queries.

3.3 Generation and User Interface

Retrieval methods. When R2R receives a user question, it retrieves related chunks using one of three
methods: (i) Vanilla performs vector search via cosine similarity; (ii) RAG Fusion combines semantic
retrieval with lexical (keyword-based) search to better handle technical vocabulary and acronyms; (iii)
HyDE (Hypothetical Document Embeddings) prompts an LLM to generate a hypothetical answer, then
searches the vector store using that answer’s embedding. These techniques represent well-established
baselines for RAG systems. While more advanced approaches exist—semantic chunking, SPLADE, Col-
BERT, agentic RAG—the combination of recursive chunking with hybrid retrieval provides a robust and
effective foundation for CIRED’s corpus size. The choice of retrieval method is exposed to users for ex-
perimentation, defaulting to Vanilla search for performance reasons.

Languagemodel integration. The system’s generative component integrates with external LLMAPIs.
Commercial providers evaluated include OpenAI, Anthropic, Mistral, and Deepseek, with substantial
cost variation across providers and models (see Section 5). For cost-effective deployment, we config-
ured CIRED.digital to use Mistral Small or Medium rather than larger models. In a RAG architecture,
the LLM’s role shifts from knowledge recall to synthesis of retrieved content. In practice, smaller mod-
els can be less prone to elaborating beyond the retrieved context, keeping responses more faithfully
grounded in CIRED publications. Recent benchmarks suggest that for RAG-based question answer-
ing, models in the 7–13B parameter range can reach 80–90% of larger model performance at a fraction
of the cost [Yu et al., 2024]. Retrieval quality matters more than model size in many RAG scenarios.
Temperature parameters are exposed to users, enabling control over response creativity.
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Frontend architecture. The frontend is implemented as a single-page web application using vanilla
JavaScript and CSS, deliberately avoiding external frameworks to minimize deployment complexity, re-
duce dependencies, and limit bundle size. The core interaction follows a question-answering paradigm:
users formulate a natural-language query, the system generates a response grounded in indexed CIRED
publications, and the interface presents the answer with explicit citations and contextual excerpts. Be-
cause response generation typically takes several seconds, the interface progressively reveals the an-
swer as it streams from the API, maintaining user engagement during response latency.

Interface design evolution. During development, the interface evolved from an initial chat-style de-
sign toward a search-oriented interaction model. This shift reflected the intended scope of the system:
Cirdi provides synthesized overviews of CIRED research on specific topics rather than conversational
dialogue or open-ended assistance. The citation mechanism displays original document passages sup-
porting each answer, with citation marks linking answer text to source documents. User testing iden-
tified interface design issues with citation rendering and revealed preferences for side-by-side presen-
tation of answers and source material.

User experience features. Interface development emphasized convenience and accessibility. The
landing page includes a word cloud generated from indexed document titles rather than a lengthy de-
scription of CIRED research themes. First-visit users receive a five-step tutorial. The user profile panel,
which captures demographic information, is fully optional. The Help panel targets non-technical users
discovering RAG systems for the first time. The settings panel displays server status and model param-
eters. We optimized citation visualization, clarified parameter meanings, and ensured LLM responses
support structured outputs including tables.

3.4 Deployment and Operations

Deployment targets a single Ubuntu LTS virtual server meeting R2R recommended specifications: 3
vCPU (AMD), 4 GB RAM, and 100 GB SSD. Hetzner Cloud was selected as the primary provider, offer-
ing cost-effectiveness, reliable European data centers (Helsinki), and straightforward Docker support.
European data residency supports GDPR compliance and institutional data sovereignty preferences.

Deployment automation is achieved through shell scripts (bootstrap.sh and deploy.sh) that
configure the server environment, manage secrets, deploy the Docker Compose stack, and establish
monitoring. Infrastructure hardening includes firewall configuration, secretsmanagement via restricted
environment files, TLS encryption for all external-facing endpoints, and automated backup and snap-
shot procedures.

A custom FastAPI/Uvicorn service provides monitoring, logging, and analytics complementary to
R2R’s core functionality. This backend captures structured event logs across six categories: session
(opening/closing), request (user question), response (LLM answers with processing time), article (for-
matted document shown to user), feedback (satisfaction ratings and comments), and userProfile (pref-
erence changes).

The system implements a privacy-preserving design. Anonymous session identifiers are generated
for each visit. User profile is only logged once and then stored client-side. Users can activate ”confi-
dentiality mode” to disable all data collection and purge any stored data. Using pure CSS and vanilla
JavaScript ensures that there are no invisible cookies or embedded trackers. Collected data serves
exclusively for service improvement and anomaly detection; session-level aggregation enables usage
pattern analysis without individual tracking.

Table 2 summarizes the system’s main components.

3.5 Implementation Reflections

Several technical challenges emerged during corpus preparation. Approximately 5–10% of PDFs re-
quired OCR fallback due to scanned-only formats—OCR processing added latency during initial index-
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Table 2: Technology stack used in CIRED.digital

Component Technology
RAG Engine R2R (SciPhi)
Vector Database PostgreSQL + pgvector
Backend API FastAPI + Uvicorn
Workflow Orchestration Hatchet
Frontend Vanilla JavaScript + pure CSS
Web Server Nginx
Reverse Proxy Nginx Proxy Manager
Containerization Docker
Language Python 3.11+, JavaScript
LLM Providers Mistral (default), OpenAI, Anthropic, Deepseek (development)
Data Source HAL API
Hosting Hetzner Cloud (Ubuntu LTS)

ing. This would be worse for historical archives. The corpus contains a majority of French or English
documents, with some others like Portuguese or Vietnamese appearing. Standard English-optimized
tokenizers and embeddings worked reasonably across languages, though language-specific optimiza-
tion might further improve quality.

While R2R was better suited for our needs than Haystack, LlamaIndex, or LangChain at the project
outset, these frameworks are rapidly evolving. Emerging frameworks such as RAGFlow or Dify may
also become relevant. Future projects will need to evaluate alternatives carefully.

Containerization via Docker Compose greatly simplified continuous integration, deployment, and
maintenance, enabling reproducible environments and straightforward updates. The modular architec-
ture facilitated independent development and testing of components, enhancing maintainability while
providing security through isolation that limits the attack surface of individual services. That said, the
digital librarian service remains simple—everything fits on a single node. For a small-scale deployment
running on a dedicated server where collateral damage is limited, scripts and virtual environments
would have sufficed without Docker.

R2R’s modular architecture proved crucial for this project. The separation of retrieval and gen-
eration components enabled efficient model provider switching and cost optimization during testing.
Supporting multiple LLM providers (Mistral, OpenAI, Deepseek) is a given in this kind of application.
Using OpenRouter would have simplified administration, billing one company to access all models.
Costs and quality differences underscore the need for periodic provider re-evaluation.

PostgreSQL with the pgvector extension proved reliable and cost-effective for the corpus size of
approximately 1,300 documents. For larger corpora (100K+ documents), dedicated vector databases
might offer performance advantages, though these claims would need verification. Default embed-
dings worked adequately for CIRED’s corpus; specialized domain-specific embeddings might improve
retrieval quality but at increased latency and cost.

Future work could explore advanced retrieval techniques such as semantic chunking, SPLADE, or
ColBERT to enhance relevance. Experimentation with different chunk sizes and overlap parameters
may also yield improvements. On the generation side, fine-tuning smaller models on CIRED-specific
data could enhance answer quality while controlling costs. Overall, the technical implementation of
CIRED.digital demonstrates the feasibility of deploying a RAG-based digital librarian service using
open-source components and containerization, providing a solid foundation for future enhancements
and expansions.
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4 Usage Analysis

This section presents user engagement with CIRED.digital during the public beta phase (July 5–October
9, 2025). The following analysis draws on 259 sessions generating 1,849 events over 96 days. Generated
answers contain 6.1 citations on average (interquartile range 3–8 citations), referring to 2.8 distinct
publications (interquartile range 1–4 publications).

Methodological note. The beta-phase dataset is limited in size and composition and does not sup-
port formal statistical inference. The analyses below therefore provide directional and design-relevant
insights, not population-level estimates. Visualizations and statistics for subsections 4.1 and 4.2 are
drawn from the analytics scripts available in the project’s codebase. Visualizations and statistics for
the query content analysis subsection 4.3 were conducted by an AI assistant (Claude) using rule-based
classification and keyword extraction methods. The system captured 290 total query submissions rep-
resenting 159 unique queries (some queries were repeated across different sessions). These queries
primarily reflect early adopters, invited testers, and CIRED network users rather than representative
public usage. Machine-based analysis introduces potential misclassification compared tomanual expert
coding.

4.1 Deployment Timeline, Activity, and User Demographics

The CIRED.digital system underwent distinct deployment phases. During the Alpha phase (April–June
2025), internal development and closed testing occurredwith a small convenience sample of testers. The
Beta Closed phase (June–early July 2025) expanded to invited testers from all CIRED. The Beta Open
phase (July 5–October 9, 2025) provided public unrestricted access following institutional announce-
ments on the CIRED institutional newsletter and on social media. Peak activity of approximately 30
new sessions occurred on July 10, 2025, following public launch announcement, with gradual decline
consistent with typical digital product adoption curves. The beta period concluded on October 9, 2025,
after 96 days of public availability. The system remains in steady operation with ongoing monitoring,
but pending the final project’s review we did not launch further promotional activities like integration
into CIREDwebsite, the HAL collection page, CIRED homepage in partners institutions, or social media
campaigns.

Figure 2: Session activity timeline over the beta period (July 5–October 9, 2025). The chart shows
cumulative session growth with peak activity following the public launch announcement on July 10,
2025.

Network traffic analysis classified user provenance during the beta phase. CIRED network users
represent 18% of sessions, with substantial engagement fromRENATER-affiliated researchers (11 %) and
French domestic visitors (33 %). Identified bots (e.g. Google bot) account for 25% of sessions, reflecting
typical web crawling activity during public deployments. This distribution indicates successful reach
both within CIRED’s institutional network and to the broader research community.
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Figure 3: User provenance by network origin.

Data collection identified a significant gap: user profile fields designed to capture profession, exper-
tise domain, and institutional affiliation were very rarely populated. This represents a critical limita-
tion for demographic segmentation analysis. The question of RGPD-compliance in future deployments
through optional, explicitly framed profile collection mechanisms remains open.

4.2 Session Patterns and Query Analysis

Figure 4 maps the complete user journey through CIRED.digital, visualizing all 1,849 event transitions
across nine event types during the 96-day beta period. The diagram reveals three distinct user behavior
patterns that account for all 259 sessions.

Bounced visitors (152 sessions, 59%) exited immediately without submitting queries, evidenced by
the strong Start→End direct transition. This high bounce rate likely reflects a combination of (i) bots,
particularly the google bot (ii) exploratory visits, users assessing whether the tool meets their needs
(iii) potential first-load technical issues or unclear value proposition. While elevated, this rate is not
unusual for beta-phase research tools deployed without marketing campaigns.

Engaged explorers (approximately 60 sessions, 23%) proceed directly from arrival to query sub-
mission (Start→request), then through the core interaction loop: request→response→article exami-
nation. The 60 direct Start→request transitions represent users who immediately began querying the
system upon arrival. These sessions generated 188 request events total across the beta period, with
many users submitting multiple queries as evidenced by the 19 request→request self-transitions and
various request→response→request cycles. It suggests that users actively engaged with source mate-
rials rather than treating AI-generated answers as definitive statements.

Cirdi logs show 129 article view events. The 52 response→article transitions are supposed to be
the normal workflow. The absence of an Article event after a Response event can be explained by (i)
lost logging events, since the system is not fully reliable in capturing every interaction (ii) users leaving
during the ”generation” phase. Some users may have left Cirdi while the LLM response was rendering,
leading to missing article view events.

Interface explorers (47 sessions, 18%) engaged primarily with system features rather than content
queries. The visibility toggle events—593 “hidden” and 450 “visible” for a total of 1,043 events—dominate
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Figure 4: User journey event transitions during the 96-day beta period. Nodes represent event types
with occurrence counts in parentheses; edges show transition frequencies with thicker lines indicating
dominant pathways. The core interaction loop (request→response→article) accounts for the majority
of engaged sessions, while direct Start→End transitions (152) reflect bounce rates.
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the interaction log numerically and indicate active exploration of help panels, settings, and citation
views. These users may have been evaluating the system’s capabilities or familiarizing themselves
with the interface before formulating queries. The high frequency of visibility toggles suggests users
found the interface elements worthy of investigation, though it also raises questions about whether the
default interface state optimally balances information density and clarity (see Section 3.3 for interface
design rationale).

Iterative refinement patterns appear clearly in the diagram. The request↔response loops (19 re-
quest→response→request cycles, plus self-transitions) confirm that 70% of sessions contained multi-
ple queries. Users frequently reformulated questions or explored related topics within single sessions,
suggesting the search-oriented interface successfully supported exploratory research workflows. The
median session depth of 3–7 interactions aligns with these multi-query patterns.

Feedback provision remained sparse: only 19 feedback events out of 107 engaged sessions (exclud-
ing the 152 bounced visitors), yielding a 18% feedback rate. Combined with the 7 feedback→btnClick
and 11 feedback→article transitions visible in Figure 4, this indicates that users who provided feedback
often continued engaging with the system rather than immediately leaving. The low-friction thumbs-
up/down design achieved reasonable adoption without requiring extensive user effort. Though the
absolute numbers remain too small for detailed sentiment analysis, the 18% feedback rate aligns with
typical internet user behavior patterns.

User profile capture proved nearly absent, with only 4 userProfile events recorded despite the op-
tional profile interface. This confirms the data collection gap identified earlier and underscores the
importance of collecting demographic information during session initialization rather than through
optional user action. The 1 userProfile→btnClick transition suggests that even when users did engage
with profile settings, they returned to core system functionality afterward.

Figure 5 presents the complete event transition diagram including all low-frequency paths and tech-
nical events. Nodes have been relabelled, e.g. visibilityOn/visibilityOff shown separately. While more
complex, this comprehensive view reveals additional patterns: users frequently toggled between visibil-
ity states (371 visibilityOff→visibilityOn and 422 reverse transitions, suggesting active management of
interface complexity. The diagram also shows that many paths lead directly to End from various states,
indicating that users exit at multiple points in their journey rather than following a single canonical
termination path.

Several findings emerge from this journey analysis with implications for future development:

1. High bounce rate requires attention. The 59% immediate exit rate suggests that there are more
bot visitors than human users. Or the landing page may not sufficiently communicate value
proposition or that technical barriers prevent initial engagement. Priority improvements include
clearer calls-to-action, example queries prominently displayed, and faster initial page load.

2. Multi-query sessions dominate engaged use. The prevalence of request→response→request
cycles confirms that the system successfully supports iterative exploration. However, the lack of
conversational context suggests that supporting multi-turn queries could substantially improve
user experience.

3. Interface complexity may deter some users. The 1,043 visibility toggle events indicate that
interface elements require active user management. Simplifying default states while preserving
power-user customization options could reduce cognitive load for first-time visitors. In the end,
it is unsure if the ”onboarding” panel was helpful or distracting, and the user profile collection
panel was not necessary.

The journey analysis establishes that CIRED.digital successfully serves the approximately 23% of
visitors who engage substantively with the system, providing them with cited, verifiable answers and
supporting multi-query exploratory workflows. Further research would be needed to understand the
high bounce rate (which are not from bots ?) and optimize the interface for first-time users.
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Figure 5: Complete user journey event transitions showing all recorded interaction paths. This compre-
hensive view includes visibility state transitions (visibilityOn/visibilityOf) shown separately, revealing
the full complexity of user interface exploration. While the core request→response→article loop re-
mains dominant, this diagram illustrates the diverse pathways users took through the system and the
prevalence of interface customization behaviors.
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4.3 Query Content and User Intent

4.3.1 Dataset Characteristics

The system captured 290 total query submissions representing 159 unique queries (some queries were
repeated across different sessions). The frequency distribution was heavily skewed: the single most
common query (“Le CIRED”) appeared 6 times, while 123 queries (77%) appeared exactly once. This
distribution is typical of exploratory beta testing where users probe system capabilities with diverse
questions rather than repeated information needs.

Query language distribution, weighted by submission frequency, shows near-parity between French
(50.5%, 95 instances) and English (46.3%, 87 instances), with minimal Arabic (3.2%, 6 instances). The bal-
anced French-English split validates the multilingual deployment approach, while the small but non-
zero Arabic usage (2 unique queries submitted 3 times each) suggests focused interest from Arabic-
speaking users—content analysis indicates these queries concerned North African energy transitions,
aligning with CIRED research themes.

Figure 6 presents a comprehensive overview of query patterns across four dimensions: language
distribution, query type classification, complexity by word count, and dominant research themes.

Figure 6: Query analysis overview showing: (a) language distribution weighted by frequency demon-
strating near-parity between French and English, (b) query type distribution with topic synthesis dom-
inating at 72%, (c) complexity distribution by word count showing most queries are simple to medium
length, (d) top research themes detected through keyword matching with energy, climate, and model-
ing as leading topics.

4.3.2 Query Type Classification

Automated content analysis classified queries into seven intent categories using rule-based pattern
matching (see methodological details in project documentation). The distribution weighted by query
frequency reveals clear patterns in user information-seeking behavior.
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Topic synthesis queries (135 instances, 71.8%) dominated the dataset, encompassing broad overview
questions (“What are the infrastructure needs in future climate mitigation scenarios?”), simple topic la-
bels (“Le changement climatique”), and concept definitions (“payments for environmental services”).
This pattern indicates users primarily sought accessible entry points to CIRED research rather than
detailed technical documentation. The prevalence of synthesis-oriented queries validates the decision
to position Cirdi as a “scientific documentalist” providing grounded summaries rather than attempting
conversational AI interactions.

Representative examples of topic synthesis queries include:

6× Le CIRED

4× التحول الطاقي في فرنسا (Energy transition in France)

4× What are the infrastructure needs in future climate mitigation scenarios?

3× payments for environmental services

3× Le changement climatique

Methodology queries (19 instances, 10.1%) focused on CIRED’s modeling frameworks, particularly
IMACLIM (integrated assessment model), Res-IRF (residential energy model), and computable general
equilibrium approaches. Representative examples include: “qu’est ce que le modèle res-IRF ?” (asked 2
times), “What can you say about the ability of IMACLIM to provide insights about the real world”, and
simply “Cge” (asked 2 times). These queries suggest the system successfully served researchers and
students seeking to understand CIRED’s analytical approaches, though the technical jargon (model
acronyms without context) indicates users already possessed familiarity with the laboratory’s work.

Publication searches (11 instances, 5.9%) were less common than anticipated during project design.
Queries included explicit author-focused requests (“liste des articles de Louis-Gaëtan Giraudet”, asked
2 times; “Articles de F. Ghersi”) and topic-specific publication queries (“quelles sont les publications sur
la climatisation ?”). The relatively low proportion suggests HAL’s native interface already adequately
serves publication discovery needs, or that users did not perceive Cirdi as optimized for this function.

Case study queries (8 instances, 4.3%) exhibited strong geographic specificity: “vietnam renewable”,
“vietnam energy efficiency”, “La tunisie”, “La transition énergétique en france et son effet sur l’emploi”.
This pattern reflects CIRED’s traditional North-South research focus spanning Asia (Vietnam, China),
Europe (France), and Africa (Tunisia, Senegal).

Testing and boundary-probing queries (6 instances, 3.2%) revealed deliberate exploration of system
limits. The pattern “raconte-moi une histoire sur…” (“tell me a story about…”) appeared 3 times with
different topics (Tunisia, energy renovation), suggesting multiple users tested conversational capabili-
ties. These queries received appropriate refusals, confirming that expectationmanagementmechanisms
functioned as designed.

Policy recommendation and data/statistics requests together comprised 4.8% of queries (5 and
4 instances respectively). Notably, one user submitted a 509-word query (3,913 characters) analyzing
Hanoi’s announced ban on diesel and petrol motorcycles, requesting infrastructure transition timelines
and supporting mechanisms. This outlier demonstrates both the system’s technical capacity to process
extended context and the need for clearer interface guidance on optimal query formulation. Data re-
quests included “Table des centrales électriques en tunisie ?” (asked 2 times) and “How much would
the development of data centers put pressure on Vietnam’s power system ?”

4.3.3 Query Complexity and Interaction Style

Query length analysis reveals that users adopted search-style rather than conversational interaction
patterns. The median query length was 5 words (mean: 10.1 words), with 68% of queries containing 7
or fewer words. Figure 6(c) shows the complexity distribution: simple 1–3 words (33%), medium 4–7
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words (35%), detailed 8–15 words (29%), and complex 15+ words (3%), excluding one extreme outlier of
509 words.

Only 17% of queries included explicit question marks, indicating most users formulated queries as
keyword phrases or topic labels rather than natural-language questions. This behavior aligns with the
search-oriented interface design, where users treated Cirdi as a semantic search engine rather than
a question-answering chatbot. The prevalence of short, declarative queries validates the decision to
implement a search paradigm rather than maintaining conversational context across queries.

4.3.4 Thematic Content

Keyword extraction and patternmatching identified dominant research themes, as shown in Figure 6(d).
Queries may match multiple themes; percentages indicate the proportion of queries containing theme-
related keywords:

• Modeling approaches (9.6% of queries): IMACLIM, Res-IRF, CGE models, scenario analysis

• Energy systems (9.0%): Renewable energy, electricity grids, smart grids, energy efficiency

• Climate change (9.0%): Climate policy, emissions, carbon pricing, mitigation scenarios

• Building sector (4.3%): Residential energy renovation, housing, thermal efficiency

• Geographic contexts: Asia (3.7%, primarily Vietnam andHanoi), Europe (3.7%, primarily France),
Africa (3.2%, Tunisia and Senegal)

The most frequent keywords, weighted by query repetition, were: “cired” (24 instances), “energy”
(15), “grid” (15), “transition” (14), “smart” (13), “infrastructure” (11), and “impact” (10). The prevalence of
“CIRED” suggests users explicitly framed queries around institutional knowledge, while energy transi-
tion terminology (energy, grid, transition, smart, infrastructure) dominated topical content. Geographic
specificity appeared frequently, with “france” (7 instances), “tunisie” (6), “hanoi” (6), and “vietnam”
(multiple mentions) indicating strong interest in country-level analyses aligned with CIRED’s research
portfolio.

4.4 Conclusion

Usage analyses presented in this chapter indicate that CIRED.digital delivers research-grade responses
aligned with its intended role as a search-oriented scientific documentalist: Cirdi returns on average 3
publications per query.

The query analysis validates several core design decisions while revealing opportunities for en-
hancement:

1. Search-oriented interface validated. The5-wordmedian query length and 83% non-interrogative
phrasing confirm users treated Cirdi as semantic search rather than conversational AI. Future it-
erations should preserve this interaction paradigmwhile enhancing rather than complicating the
interface.

2. Topic synthesis prioritization confirmed. With 72% of queries seeking overviews and accessible
entry points, the system correctly emphasizes grounded summarization over technical deep dives.
Citation mechanisms remain essential to enable verification while maintaining accessibility.

3. Multilingual deployment justified. Near-parity between French (50%) and English (46%) val-
idates investment in multilingual query handling, while minimal Arabic usage (3%) suggests
either limited awareness among Arabic-speaking audiences or insufficient corpus coverage of
Arabic-language research contexts.
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4. Multi-turn context emerges as priority enhancement. Although the current analysis cannot
track query sequences within sessions (session identifiers were not linked to query logs), the
journey analysis (Section 4.2) showed 70% of sessions contained multiple queries. Combined
with negative feedback citing lack of conversational memory (30% of complaints), this indicates
that supporting follow-up questions while maintaining the search paradigm could substantially
improve user experience. Example sequences inferred from query content suggest patterns like:
“IMACLIM” → “capital accumulation in IMACLIM” → “IMACLIM real-world validity”.

5. Structured output generation. Data/statistics queries (2%) and some publication searches (6%)
requested tabular formats—requests the current system appropriately declines rather than gen-
erating unreliable structures. Future work could explore structured output generation with ap-
propriate quality controls for author bibliographies, model comparison tables, or country-level
energy statistics.

6. Publication discovery integration. The6%publication search proportion, lower than anticipated,
suggests either that HAL adequately serves this need or that users did not perceive Cirdi as
optimized for publication discovery. Enhanced integration with HAL metadata and author-topic
linking could strengthen this functionality.

Usage data highlights clear improvement priorities. First, the absence of conversational memory
constrained follow-up questions in multi-query sessions, despite evidence that engaged users itera-
tively refined their queries. Second, the stealth mode during the beta phase limited overall traffic, with
automated agents accounting for approximately one quarter of visits. Third, interface complexity—as
revealed by extensive visibility toggling—suggests that default presentation choices could be simplified
further: the user profile dialogs appear unnecessary, and for audiences already familiar with RAG sys-
tems the onboarding panel may be superfluous. Finally, instrumentation could be strengthened: the
absence of systematic latency logging limited retrospective performance assessment.

Beyond these refinements, the analysis provides directional evidence that CIRED.digital success-
fully attracted substantive research queries aligned with CIRED’s institutional expertise, served diverse
user intents through a search-oriented interface, and operated effectively across multiple languages.
The observed usage patterns inform both immediate system improvements (notably multi-turn context
handling and structured outputs) and longer-term strategic questions regarding the positioning of Cirdi
within CIRED’s broader knowledge dissemination ecosystem.

Overall, the evidence supports the conclusion that CIRED.digital meets its core objective: providing
transparent, citation-grounded access to CIRED publications for exploratory research and knowledge
discovery, while generating concrete, actionable insights to guide future system evolution.
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5 Costs

The CIRED.digital project demonstrates that institutional RAG deployment remains financially acces-
sible to research laboratories operating under realistic budget constraints. This section presents com-
prehensive cost analysis spanning development investment, operational expenditures, and long-term
sustainability considerations. Drawing on empirical data from the 96-day beta deployment and compar-
ative analysis of similar projects, we establish that production-ready conversational access to scientific
publications can be achieved for €40,000–60,000 in development costs and €5,000–10,000 in annual op-
erational costs—figures well within reach of most research institutions. The project was a personnel
investment rather than technology procurement.

5.1 Development Costs

5.1.1 Cost Estimation Methodology

Estimating software development costs retrospectively presents methodological challenges, particu-
larly for research projects where effort is distributed across multiple contributors with varying time
commitments. We employed three complementary estimation approaches to triangulate realistic cost
ranges, each drawing on different evidence bases and accounting frameworks.

The commit-based analysis uses version control activity as a proxy for development effort. GitHub
records 210 commits to the main branch over the project timeline. Assuming each commit represents
an average of 2.5 hours of work—including coding, testing, debugging, and documentation—yields an
estimate of 525 total development hours. This multiplier reflects established software engineering prac-
tice: commits represent integrated, tested changes rather than raw coding time, and include associated
quality assurance activities.

The component-based breakdown itemizes development effort by functional area: RAG backend
implementation (120 hours), frontend development (80 hours), data ingestion pipeline (60 hours), and
so forth. This bottom-up accounting, informed by project logs and team member estimates, totals 550
hours across ten major work categories. The close agreement with the commit-based estimate (525 vs
550 hours, within 5%) strengthens confidence in both approaches.

The lines-of-code (LOC) method applies industry productivity benchmarks to the project code-
base. Repository analysis identifies approximately 14,500 lines of code across Python (44.8%), JavaScript
(26.5%), and other languages. Using a conservative 10 LOC per hour productivity rate—appropriate for
research-quality code with comprehensive testing and documentation—yields 1,450 hours. This sub-
stantially higher estimate likely reflects the comprehensive scope of research projects, which include
exploratory work, literature review, architectural design, and methodological refinement not captured
in commits or component breakdowns.

All three methods rest on documented assumptions. We assume that commit granularity reflects
typical development practices (commits every 2–4 hours of substantive work), that component esti-
mates capture both direct implementation and associated overhead, and that productivity rates align
with academic rather than commercial software development contexts. The French academic salary
scale provides baseline hourly rates: junior developers (€25/hour), mid-level developers (€45/hour),
senior developers (€70/hour), and research engineers (€60/hour).

Confidence levels vary across methods. The commit-based and component-based estimates, show-
ing near-identical results, achieve high confidence (±15%). The LOC-based estimate, while method-
ologically sound, likely overestimates by including research activities peripheral to code production;
we assign it medium confidence (±30%). Overall, we assess medium-high confidence (±20%) for the
recommended range, reflecting convergent evidence from multiple methodologies.

These estimates carry inherent limitations. We cannot access detailed time logs from all six contrib-
utors, making precise effort allocation impossible. Individual learning curves—particularly for contrib-
utors new to RAG systems or containerized deployment—are not separately quantified. The repository
creation date may not precisely align with project initiation, introducing boundary ambiguity. Despite
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these limitations, the methodological triangulation provides robust evidence for cost range estimation.

Table 3: Development cost estimates using three complementary methodologies. The LOC-based esti-
mate intentionally provides a conservative upper bound, as it includes exploratory research, architec-
tural design, and learning activities beyond direct code production.

Method Hours Cost (€60/h) Confidence

Commit-based 525 €31,500 High
Component-based 550 €33,000 High
LOC-based 1,450 €87,000 Medium

Recommended range 667–1,000 €40,000–60,000 Medium-High

5.1.2 Development Cost Analysis

The three estimation methodologies converge on €40,000–60,000 development cost including labor,
with €50,000 mid-range estimate. Table 3 summarizes estimates and confidence levels. The conserva-
tive estimate of €33,000 assumes 550 hours at €60/hour, while the €87,000 upper bound reflects com-
prehensive research activities including literature review and architectural exploration.

This range acknowledges that research software development encompasses requirements analysis,
technology evaluation, stakeholder consultation, iterative testing, and comprehensive documentation
beyond direct coding. Cost projections vary with personnel: junior developers (€25/hour) yield €13,125
for 525 hours, senior developers (€70/hour) cost €36,750, and freelance consultants (€100/hour) charge
€52,500.

Institutions with skilled research engineers or motivated graduate students can achieve outcomes
at the lower end. Those requiring external contractors should budget toward the upper range. Ma-
ture open-source frameworks (R2R, LlamaIndex, LangChain) substantially reduce development time,
making €40,000–60,000 realistic for production-ready institutional deployments.

According to the FrenchDirectionGénérale des Entreprises’ RAG adoption guide [DirectionGénérale
des Entreprises (DGE), 2024], integrator-based implementations typically cost €100,000, while internal
development requires at least one data scientist, developer, and system administrator for 3+ months.
SaaS solutions range €10,000–100,000 annually. Infrastructure costs include GPU investment ( €3,250
for Nvidia RTX 4090, €0.10/1,000 queries electricity) for on-premise, or cloud hosting at €7.80/1,000
queries (€106/employee/year at 300 queries/week).

CIRED.digital’s €40,000–60,000 development cost aligns with the lower end of custom implementa-
tions through strategic choices: leveraging open-source R2R, focused scope (corpus access vs. general-
purpose assistant), and research mission alignment (publishable outputs beyond operational value).
Operational costs (€50–200 annually for infrastructure/API, €5,000–10,000 including maintenance) po-
sition the system as cost-effective while delivering production-ready infrastructure, comprehensive
documentation, empirical evidence, and reusable open-source components.

5.2 Operational Costs

5.2.1 Infrastructure Costs

CIRED.digital operates on a domain registered through Gandi.net at €30/year. The core infrastructure
cost is virtual private server (VPS) hosting for the RAG system backend, database, and web application.
The service could be transferred to an institutional domain to reduce costs and improve governance.
Alternatively the domain could become the entry point for CIRED’s broader digital presence.

CIRED.digital operates on a single virtual private server (VPS) meeting the R2R framework’s rec-
ommended specifications: 2–4 vCPU (AMD architecture), 4–8 GB RAM, and 50–100 GB SSD storage
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running Ubuntu LTS.This modest configuration suffices for a corpus of approximately 1,300 documents
far exceeding actual beta deployment traffic.

Provider selection prioritized cost-effectiveness, European data residency, and developer reliabil-
ity. We selected Hetzner Cloud (Helsinki) for its competitive pricing (€10/month for 2 vCPU, 4 GB
RAM, 80 GB SSD), straightforward administration, and robust performance. Table 4 compares Euro-
pean alternatives evaluated for the project. OVHcloud offers comparable pricing (€9.22/month) with
broader geographic distribution across France, Germany, Poland, and the UK, though with marginally
more complex administration interfaces. Scaleway (France) and DigitalOcean (Amsterdam/Frankfurt)
charge €15–18/month for equivalent configurations—affordable but 50–80% more expensive than Het-
zner. Infomaniak (Switzerland) represents the premium option at €11.50/month, distinguished by ex-
plicit 100% renewable energy sourcing and Swiss data protection frameworks, though at modest cost
premium without proportionate functionality gains for this use case.

Table 4: European VPS hosting options evaluated (2–4 vCPU, 4–8 GB RAM)

Provider Location Monthly Cost Annual Cost

Hetzner Cloud Helsinki €10.00 €120
OVHcloud France/Germany €9.22 €111
Scaleway France €15.00 €180
DigitalOcean Amsterdam €18.00 €216
Infomaniak Switzerland €11.50 €138

Projecting to annual sustained operation, infrastructure costs range €120–210/year depending on
configuration choices and redundancy requirements. The baseline €120 reflects continuous opera-
tion on the current single-VPS deployment. Enhanced reliability through redundant servers or load-
balanced configurationswould add €50–90/year, but these are beyond the need of a small RAG.Monitor-
ing and logging services (Prometheus, Grafana, or commercial alternatives) cost €0–50/year depending
on provider and feature requirements, but these services should be sourced for the whole information
system, not just the RAG component. For a production research service, we recommend budgeting
€140–180/year (€120 baseline + €20–60 backup/monitoring) as a realistic steady-state infrastructure
cost.

Infrastructure costs exhibit minimal scaling with usage over substantial ranges. The current con-
figuration handles 259 sessions and 290 queries with negligible load—estimated average utilization re-
mains below 20%. This headroom accommodates 10× traffic growth (2,500–3,000 sessions, 2,000–3,000
queries annually) without infrastructure upgrades. Only at 10,000+ annual sessions would database
optimization, caching layers, or additional VPS capacity become necessary. This cost profile—fixed
infrastructure adequate for broad usage ranges—makes institutional RAG deployment economically
favorable compared to per-query commercial services.

5.2.2 LLM API Costs

Large language model APIs constitute the variable cost component in RAG system operation, scaling
directly with usage volume and model selection. Commercial LLM providers price services by token
consumption, with dramatic variation: 20–40× differences between economical and expensive options.
Table 5 compares major providers evaluated during development. Mistral AI’s Small model (€0.14/M to-
kens) offers the lowest cost among production-ready options. Mistral Medium (€0.24/M) and DeepSeek
V3.1-Terminus (€0.27/M) provide mid-range alternatives, while OpenAI’s GPT-5.2 costs approximately
21× more than Mistral Small under typical RAG usage patterns (90% input, 10% output tokens).

Cost does not scale linearly with quality in RAG applications. Empirical studies show that while
larger models achieve higher absolute performance, smaller models demonstrate substantial relative
improvement from retrieval augmentation, with RAG helping smaller models more than larger ones
[Soudani et al., 2024]. In RAG architectures, the generator’s role shifts from knowledge recall—where
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Table 5: LLM API pricing comparison (per 1M tokens, December 2025)

Provider Model Cost per 1M tokens Relative Cost

Mistral AI Small €0.14 1.0×
Mistral AI Medium €0.24 1.7×
DeepSeek V3.1-Terminus €0.27 1.9×
OpenAI GPT-5.2 €1.75 in / 14.00 out 21×*

*Relative cost calculated for typical RAG usage (90% input, 10% output tokens = €2.98/M blended). Pure input: 12.5×; pure
output: 100×.

larger models excel—to synthesis of retrieved passages. This architectural change narrows the perfor-
mance gap between model sizes.

Systematic testing during CIRED.digital development confirmed thatMistral Small (€0.14/M tokens)
achieved adequate answer quality for institutional question-answering at approximately 5% of GPT-4’s
cost. For corpus-grounded applications with high-quality retrieval, the cost-quality trade-off favors
economical models: retrieval quality and chunking strategy matter more than generator sophistication
for factual grounding. This makes smaller models strategically appropriate for production institutional
RAG systems operating under realistic budget constraints.

Table 6: Measured LLM API usage and costs across all providers

Provider Period Phase Tokens Cost (EUR) Days

Development phase (OpenAI only)
OpenAI June 2025 Development 20,617,818 – 30
OpenAI July 1–4, 2025 Development 240,020 – 4

Beta deployment phase (Mistral)
Mistral July 5–31, 2025 Beta 1,115,310 0.20 27
Mistral August 2025 Beta 6,938 0.00 31
Mistral September 2025 Beta 27,469 0.00 30
Mistral October 1–9, 2025 Beta 8,587 0.00 9

Development total (OpenAI) 20,857,838 – 34
Beta total (Mistral) 1,158,304 0.20 97
Complete project total 22,016,142 0.20+ 131

CIRED.digital deployed Mistral Small as the primary generation backend. The 96-day beta de-
ployment processed 290 queries consuming 1,158,304 tokens (Table 6)—approximately 3,994 tokens per
query including both input context and generated output. At Mistral Small’s €0.14 per million tokens
pricing, total API cost was €0.20 (€0.0007 per query), negligible compared to infrastructure costs. Peak
usage occurred in early July following launch (Figures 7 and 2), declining to near-zero in subsequent
months as usage stabilized.

Development phase testing (June-early July 2025) consumed 20.9 million tokens on OpenAI models
for prototyping and comparison testing. Production deployment transitioned to Mistral Small for the
96-day beta, consuming only 1.2 million tokens at €0.20 total cost.

Figure 7 displays daily token consumption patterns in July, with dark blue representing input to-
kens (query text plus retrieved document context) and light blue representing output tokens (generated
answers). The stacked bar visualization reveals that input tokens dominate output tokens—because
RAG systems provide multiple document passages to ground each response. Peak activity on July 2–3
exceeded 200,000 tokens per day, driven by concentrated testing and exploration following the pub-
lic announcement. Subsequent weeks show moderated usage around 50,000–100,000 tokens per day,
declining toward month end consistent with typical user adoption curves.
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Figure 7: Daily token consumption during peak usage month (July 2025). Dark blue represents input
tokens (context), light blue represents output tokens (generated responses). Peak activity occurred July
2–3 following public launch announcement.

5.2.3 Total Cost of Ownership

Total cost of ownership (TCO) integrates development investment, operational expenditures, and on-
going maintenance. Table 7 summarizes costs across the beta period and projects annual steady-state
operation.

Table 7: Total cost of ownership for CIRED.digital deployment, including labor costs

Cost Category Beta Period (96 days) Annual Projection

Infrastructure (VPS) €32 €120–210
Domain name €30 €90
LLM API € 0.20 €50–300
Maintenance (labor) – €5,000–10,000

Operational Total €35–37 €5,260–10,600
Development (one-time) – €40,000–60,000

The 96-day beta deployment incurred €33.20 in direct operational costs: €33 infrastructure plus
€0.20 API charges. This supported 259 user sessions and 290 queries, yielding a unit cost of €0.13 per
session for operational expenses only, or €155-232 per session including development amortization.

First-year TCO ranges €45,170–70,510, incorporating both one-time development (€40,000–60,000)
and recurring operational costs (€5,170–10,510). In subsequent years, costs decline to €5,170–10,510
annually as development costs amortize. Labor costs dominate at 90–95% of first-year TCO and 95–
98% of ongoing annual costs, indicating that institutional RAG deployment constitutes primarily a labor
investment rather than technology procurement.

Unit cost economics demonstrate favorable scaling properties. At beta-period utilization (259 ses-
sions), total first-year cost per session reached €154–232. However, at 1,000 annual sessions, this drops
to €45–71 per session, and at 5,000 annual sessions to €9–14 per session. This scaling behavior—
declining unit costs with increasing utilization—reflects the high fixed-cost, low variable-cost struc-
ture: development represents a one-time investment whose per-unit cost decreases as usage grows,
infrastructure costs remain essentially flat across wide usage ranges (100 to 10,000+ sessions), and only
maintenance effort increases sub-linearly with usage.

The TCO analysis establishes that institutional RAG deployment remains financially viable for re-
search laboratories. First-year investment of €45,000–70,000 positions the project within typical re-
search infrastructure budgets. Ongoing annual costs of €5,000–10,000 represent manageable commit-
ments comparable to journal subscriptions. Unit cost scaling ensures that increasing adoption improves
economic viability.
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5.3 Lessons Learned and Discussion

5.3.1 Implications of the cost structure

The dominant role of labor costs—95%+ of total expenditure—carries strategic implications. Tech-
nology costs (infrastructure, API) remain modest and predictable, while human effort (development,
maintenance, support) drives financial requirements. This distribution suggests that cost optimization
should emphasize developer productivity (leverage frameworks, avoid reinventing components, prior-
itize maintainability) over marginal infrastructure savings. Investing effort to reduce API costs from
€200 to €100 annually yields negligible benefit compared to reducing development time from 1,000 to
800 hours (saving €12,000–14,000). Cost-conscious projects should thus focus on technical efficiency
and scope discipline rather than provider negotiation.

For API provider costs, we observed 20× price variation between a small-but-adequate and a large
best-in-class LLM. The provider landscape evolves rapidly, optimal configuration would require quar-
terly reviews, and staying away from vendor lock-in. Potential savings derive from open-weightmodels
deployed on institutional GPU infrastructure. If CNRS provides access to Mistral API, or to an Ollama
server at Huma-Num, per-token API charges could be eliminated entirely. It is even likely that a fine-
tuned 7B-12B model hosted at CIRED could be enough.

For hosting, a modest VPS suffices for small-to-medium RAG deployments. Institutional migration
to CNRS or other institutional infrastructure would eliminate hosting costs entirely while improving
data sovereignty and mission alignment. The low infrastructure cost profile (under €200/year) suggests
that hosting provider selection should prioritize reliability, data residency, and institutional integration
over marginal price differences.

5.3.2 Value Proposition

A cost-benefit assessment would have to compare the modest operational costs outlined above with
multiple intangible benefit streams – research tool, mediation infrastructure, open science contribution
– and strategic alignment with institutional mission.

Publication valorization represents a primary benefit. While a journal citation indicates scholarly
influence, a conversational query reveals broader interest—from students exploring a research field /
methods, to practicioners implementing CIRED ideas. This expanded audience for research aligns di-
rectly with CIRED’s mission to bridge science and policy on environment and development challenges.

Science mediation constitutes another concrete benefit. The system can serve as infrastructure for
knowledge brokerage towards journalists and educators, reducing barriers between specialized aca-
demic literature and non-specialist audiences. The CIRED.digital project establishes a proof-of-concept
for AI-assisted science communication.

Research tool functionality emerged clearly from usage : literature review, methodological refer-
ence, citation discovery, and comparative analysis. Graduate students and early-career researchers par-
ticularly benefit from rapid access to CIRED’s accumulated expertise without requiring deep familiarity
with individual publications or researchers. Senior scholars used the system for quick fact-checking
and corpus exploration during manuscript preparation. These research support functions complement
rather than replace traditional literature search but improve efficiency.

CIRED.digital enhances institutional visibility and technical positioning, demonstrating capability
to deploy advanced AI systems responsibly. The project contributes to collective learning on AI in-
tegration in research institutions, providing concrete evidence on what works, what fails, and what
sustainability models prove viable. Open science commitments amplify impact through knowledge
sharing and community contribution.

5.3.3 Pathways for the next year

Sustained operation requires transitioning from commercial cloud deployment to institutional infras-
tructure. We evaluated three pathways with distinct cost and governance implications (Table 8).
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Table 8: Sustainability pathways: costs and characteristics

Pathway Key Characteristics

Commercial cloud Current solution; proven reliability; interim option
Institutional hosting Zero infrastructure costs; CNRS data sovereignty; 6–12 month migration timeline
Federated network Aspirational; requires 2+ years; multi-institution coordination

Institutional migration (recommended). Transitioning to CNRS infrastructure eliminates infras-
tructure costs while improving data sovereignty and institutional alignment. While institutions are still
exploring how to support RAG in their research units, three options already stand out:

• Huma-Num: CNRS digital humanities infrastructure supporting experimental tools with GPU
resources

• Partner schools: AgroParisTech, Ponts ParisTech, MSH, EHESS shared infrastructure

• Internal infrastructure: CIRED’s own servers and GPU resources.

Migration challenges include 6–12 month coordination timelines, technical validation (Docker sup-
port, compute resources, API access), and governance definition (maintenance responsibilities, cost
allocation, service expectations). Despite complexities, institutional hosting provides the most sustain-
able pathway for services persisting beyond individual projects. Target: complete migration within 12
months.

Commercial cloud (interim). The current Hetzner deployment provides reliable interim hosting
(zero downtime during beta) with operational flexibility and minimal procurement overhead. An-
nual costs of around €120 for hosting, €90 for domain name, remain manageable but sacrifice data
sovereignty and institutional capacity-building. This pathway suits the transition period or institu-
tions prioritizing operational autonomy.

Federated network (aspirational). Coordinating shared RAG infrastructure across institutions
through research networks could reduce costs through economies of scale. However, this requires
robust multi-institution governance, and technical architecture supporting multi-tenancy. Ultimately,
the CCSD could provide RAG as a service for HAL collections. This would eliminate infrastructure
costs and simplify deployment for research units.

Ideal priorities for the next 12 months: secure institutional hosting, establish operational gover-
nance, formalize maintenance time budget, and conduct periodic evaluation of usage and value deliv-
ery.
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6 Environmental Impact and Responsible AI Deployment

Thedeployment of AI systems in research institutions raises questions about environmental sustainabil-
ity and responsible technology governance. This section presents the environmental impact assessment
for CIRED.digital and documents the responsible deployment practices implemented during the pilot
phase.

6.1 Marginal Carbon Footprint Assessment

We assessed operational emissions during the 96-day beta period (July 5–October 9, 2025) covering
290 user queries across 259 sessions. The assessment encompasses two emission sources: computa-
tional carbon footprint from LLM inference and infrastructure carbon footprint from VPS hosting. We
employed component-based accounting, separately estimating emissions from computational activities
and infrastructure operation, then summing to total footprint.

Several components fall outside the assessment boundary: embodied carbon from hardware man-
ufacturing (typically <10% of operational emissions for cloud infrastructure), network transmission
emissions (<5% of digital service footprints), user device emissions (consumed regardless of CIRED.digital
access), the development phase and indirect effects from enabled or avoided activities. For computa-
tional emissions, we multiply measured token consumption from provider billing records by model-
specific carbon coefficients from provider disclosures. For infrastructure emissions, we estimate server
power consumption, multiply by operational hours, and apply grid carbon intensity for the datacenter
location.

6.1.1 Infrastructure Carbon Footprint

The VPS configuration—3 vCPU, 4GB RAM, 50GB SSD on Hetzner Cloud’s Helsinki datacenter—draws
approximately 30-60W at full load (EPYC cores are 10-20W each). With the average utilization typical
of CIRED.digital’s predominantly idle workload profile – load curves show 1 vCPU at 25% on average –
we assume an effective power consumption averages of 45W/12 = 3.75W. The 96-day beta period spans
2,304 hours, yielding total energy consumption of 8.64 kWh.

Grid carbon intensity varies dramatically by location. Finland’s electricity grid exhibits 0.09 kg
CO₂/kWh (2024 data), reflecting substantial nuclear and renewable generation. This compares favorably
to the European average (0.35 kg CO₂/kWh) and alternatives like Germany (0.35 kg CO₂/kWh), while
locations like Iceland andNorway achieve even lower intensities (0.01–0.05 kg CO₂/kWh) through near-
complete renewable generation.

We adopt Finland’s grid intensity (0.09 kg CO₂/kWh) for our primary estimate: 8.64 kWh × 0.09
kg/kWh = 0.78 kg CO₂ for infrastructure over the 96-day period. Using the conservative European
average (0.35 kg CO₂/kWh) would yield 3.02 kg CO₂—an increase of 2.24 kg (+288%), i.e., Finland is a 74%
reduction relative to the European-average assumption. Infrastructure emissions remain substantial
because servers consume power continuously regardless of utilization, scaling with service availability
(24/7 operation) rather than usage intensity. A system processing 10× more queries would increase
computational emissions proportionally but leave infrastructure emissions essentially unchanged.

6.1.2 Generative AI carbon footprint

API usage was measured empirically using provider billing exports and dashboards. Table 6 presents
the complete measured usage across development and deployment phases.

Usage patterns reveal distinct phase characteristics. Development concentrated in June with 20.6
million tokens as the team rapidly iterated on RAG architecture, tested multiple retrieval strategies, and
refined the user interface. The transition to Mistral for public deployment in July coincided with the
beta launch, generating peak deployment usage (1.12 million tokens). August and September showed
sharp usage decline consistent with post-launch adoption curves.
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For carbon footprint calculation, we focus on the 96-day beta deployment period using Mistral, as
this represents the public-facing system operation. Development token consumption on OpenAI, while
substantial, occurred during a distinct experimental phase with different models and pricing structures.
Separating these phases provides clearer assessment of operational footprint for the deployed system.
Moreover, indirect tokens used by coding tools like Copilot and Devin.ai during the development
phase are not known, but certainly significant. Empirical studies show LLM inference emissions rang-
ing from 0.1 to 10 grams of CO2 per million tokens (Mtoken), with smaller models like 7B parameters
typically under 1 g CO2/Mtoken and larger ones exceeding 5 g under intensive conditions Patterson
[2025], Luccioni and Jernite [2025].

Key drivers include location via grid carbon intensity (renewables reduce footprints by up to 70%),
time-of-day usage, infrastructure such as GPU type and batching, model size with linear emission scal-
ing, structure (e.g., reasoning chains), and thinking budget driving quadratic energy with sequence
length Patterson [2025], Dhar [2025], Luccioni and Jernite [2025].

Uncertainties arise from 2–10x measurement variations due to inconsistent power models, ignored
cooling overhead (up to 30%), fluctuating regional emission factors (50–800 gCO2/kWh), and over-
looked lifecycle emissions Patterson [2025], Luccioni et al. [2023]. According to Team [2025], the ma-
jority of CO2 emissions arise from inference, but LLM training emissions are not negligible (10-40%) in
a lifecycle perspective – but some companies claim 100% offset or renewable energy procurement.

Mistral AI [2025] provides carbon intensity disclosures forMistral Large, computed by the company
according to a robust Lifecycle Analysis methodology. It reports that after 18 months of usage, Mistral
Large 2 generated 20,4 ktCO2e, and that the marginal impact of inference is 1,14 gCO2e per 400-token
reponse. It also reports that footprint varies proportionally with model size. Given that Mistral Small
is approximately 1/5th the size of Mistral Large 2 (24B vs. 123B), we estimate a marginal inference
impact of approximately 0.228 gCO2e per 400-token response, or 0.228 / 400 * 1000000 = 570 gCO2e per
Mtoken response.

Mistral reports marginal impacts per 400 output tokens (‘response’). Converting to per-total-token
values requires an assumed input/output token ratio. Assuming a 1:1 input-output ratio (typical for
Q&A), total tokens per response double to 800, halving themarginal impact to approximately 285 gCO2e
per Mtoken. Applying that carbon coefficient (285g CO₂ per million tokens): 1,158,304 beta tokens ×
285g/1M = 330g CO₂ for LLM inference across the 96-day beta period.

Initial corpus indexing processed approximately 1,300 documents totaling 2 million tokens through
embedding models, contributing 100g CO₂ (using 50g/1M coefficient for embedding models). Query-
level embeddings (converting each incoming question to a semantic vector) added approximately 2g
CO₂. Processing overhead—query processing, retrieval operations, result ranking, logging, and analytics—
contributed an estimated 20g CO₂ based on typical CPU utilization patterns.

Total computational footprint for beta deployment: LLM inference (330g) + initial embeddings
(100g) + query embeddings (2g) + processing overhead (20g) = 452g CO₂, or 0.45 kg CO₂. This rep-
resents approximately 37% of total system emissions. Per-query computational emissions averaged
1.6g CO₂ (452g ÷ 290 queries), well below a Google search (7–50g depending on methodology) and
substantially below email with attachment (50g) or brief video streaming (36–150g per hour).

6.1.3 Total carbon footprint and comparative analysis

Table 9 presents the complete carbon footprint breakdown for the 96-day beta deployment.
The cumulative carbon footprint totals 1.23 kg CO₂ equivalents for the 96-day beta deployment.

Per-query emissions average 4.2g CO₂ (1,230g ÷ 290 queries), below many published estimates for a
Google search (7–50g) and substantially below email with attachment (50g) or brief video call (150–
300g per hour). Per-session emissions mirror per-query figures given most sessions involve single
queries, though multi-query sessions exhibit lower per-query impact due to fixed infrastructure over-
head amortization.

Table 10 situates CIRED.digital’s footprint relative to conventional research activities. These com-
parisons establish orders of magnitude rather than precise substitution effects, as researchers typically
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Table 9: Carbon footprint breakdown for 96-day beta deployment

Component Calculation Basis CO₂ (kg) % of Total

LLM Inference 1,158,304 tokens × 285g/1M 0.330 26.8%
Embeddings (one-time) 2M tokens × 50g/1M 0.100 8.1%
Query Processing Estimated overhead 0.020 1.6%
Query-level embeddings 290 queries × 50–100 tokens × 50g/1M 0.002 0.2%

Computational subtotal 0.452 36.7%

VPS Hosting 8.64 kWh × 0.09 kg/kWh 0.778 63.3%

Total 1.23 100%

combine multiple access methods.

Table 10: Carbon footprint comparison: CIRED.digital vs. conventional research activities

Activity CO₂ Emissions

CIRED.digital query 4.2g
Google search (per query) 7–50g
Email with attachment 50g
Printing a 15 pages article (duplex) 40-80 g
Video call (30 minutes) 75-150 g

CIRED.digital (96 days) 1.23 kg
10 km automobile driving (French car) 2.5 kg
One researcher conference (EU flight) 500–1,500 kg

Projecting to sustained annual operation: infrastructure contributes approximately 3.0 kg CO₂/year
(constant), while computational emissions scale with usage. At observed token consumption rates
(1.16M tokens per 96 days), annual operation would consume approximately 4.4M tokens if each quar-
ter is comparable to the beta phase, yielding approximately 1.3 kg CO₂/year for LLM inference (plus
retrieval/processing overheads of similar magnitude to the beta period when scaled). Total projected
annual footprint: approximately 4.7 kg CO₂/year, equivalent to about 19 km automobile driving. It
is important to note that this projection assumes modest adoption; significant increases would raise
computational emissions proportionally.

The system exhibits favorable scaling properties. While conventional activities exhibit linear emis-
sions scaling, CIRED.digital exhibits sublinear scaling due to a fixed infrastructure component. At the
beta deployment’s 290 queries over 96 days, per-query infrastructure contribution was 2.7g CO₂. At
10× usage (2,900 queries), this drops to 0.27g CO₂. High-traffic institutional RAG systems deliver better
per-query environmental performance than lightly-used pilots.

6.1.4 Key Findings and Optimization Insights

Three factors dominate environmental performance:
Infrastructure location matters most. With 63% of emissions from hosting under the Finland-

based estimate, datacenter grid intensity remains the single largest lever on overall footprint. Using the
European-average grid intensity (0.35 kg/kWh) would increase infrastructure emissions by a factor of
3.9 (0.78 → 3.02 kg CO₂ over 96 days). Selecting hosting in Iceland or Norway (0.01–0.05 kg CO₂/kWh)
could reduce infrastructure emissions by an additional 44–89% relative to Finland.

Model selection affects computational emissions 5–10×. Mistral Small emits several times less
than alternatives (e.g., Large class models) under comparable conditions. Because computational emis-
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sions represent roughly 37% of total footprint in this deployment, model and provider choices (including
datacenter energy sources) can materially affect the total system footprint in addition to affecting cost
and latency.

Usage intensity improves efficiency. Fixed infrastructure costs (0.78 kg CO₂ for 96 days) amortize
across queries. At 290 queries, per-query infrastructure contribution was 2.7g CO₂. At 2,900 queries
(10× usage), this drops to 0.27g CO₂. Intensive, widespread use delivers better per-query environmental
performance than sporadic deployment. This scaling property means successful adoption and increased
utilization improve rather than degrade environmental credentials.

The measured data validates the fundamental finding: for institutional RAG systems, the biggest
environmental levers are (i) low-carbon electricity for always-on infrastructure and (ii) efficient
models for inference. Optimization efforts focused on only one of these dimensions miss a large share
of the available reductions.

6.2 Responsible Deployment Practices

6.2.1 Privacy Protection and Transparency

CIRED.digital implements privacy-by-design through anonymous session identifiers. User profile is
stored client-side and can be purged by the user at anytime – the user profile is stored in the logs on
European private servers, and contain only demographic information. No user registration, authenti-
cation, or account creation is required. Query text and interaction logs capture research usage patterns
but are anonymized. Optional ”confidentiality mode” disables all logging for users requiring absolute
privacy. No framework or hidden tracking mechanisms are employed.

GDPR alignment follows data minimization (collecting only information necessary for service op-
eration), purpose limitation (restricting data use to stated objectives), transparent disclosure (acces-
sible privacy documentation), user control (opt-out via confidentiality mode), and institutional data
sovereignty (European datacenters under CNRS control). Anonymized datasets prepared for public
archival remove residual identifiers, enabling open science contributions while protecting individual
privacy.

The citation mechanism constitutes the core transparency feature. Every CIRED.digital response
includes explicit citations linking claims to source passages in original publications. Citation marks
display original text excerpts (up to 600 characters per citation) with document metadata (title, authors,
publication year, DOI/HAL identifier). Users can verify claims by examining source material directly.
User feedback consistently identified citations as the most valued feature, with satisfaction correlating
strongly with citation relevance and completeness.

System capability communication establishes appropriate user expectations. The landing page
clearly identifies Cirdi as a ”documentaliste scientifique” rather than general-purpose chatbot. The
Help page displays system limitations—no conversational memory (stateless Q&A mode), no real-time
data or current events, restriction to indexed CIRED documents, in order to prevent user frustration
frommismatched expectations. Out-of-scope queries are declined since the RAG does not find relevant
information.

6.2.2 Risk Mitigation

Hallucination risk. Despite RAG grounding, LLMs retain capacity to generate plausible but unsup-
ported content. Mitigation strategies included conservative generation parameters prioritizing accu-
racy over fluency, mandatory citation mechanisms enabling user verification, and epistemic humility
in system communication. User feedback mechanisms (thumbs up/down with optional comments)
enabled error reporting, with negative feedback correlating strongly with citation quality. Formal re-
sponse quality audits could be conducted in future production deployments to monitor hallucination
rates and citation accuracy.

Misattribution risk. When AI-generated content bears implicit institutional endorsement, users
may interpret responses as authoritative CIRED positions rather than syntheses of published liter-

34



ature. CIRED.digital addresses this through explicit presentation as an AI-generated synthesis and
encouragement of source verification through citation mechanisms.

Corpus limitations. CIRED publications emphasize environment-development intersections pri-
marily from economics and policy perspectives, with geographic focus on France, Europe, and Global
South contexts. This introduces perspective bias: questions outside CIRED expertise receive incomplete
answers. The system transparently acknowledges these limitations through corpus scope documenta-
tion illustrated by the landing page wordcloud.

Misuse potential. We hardened R2R default docker configuration and added a Nginx Proxy Server
to implement rate limiting and anomaly detection for protection. No significant abuse occurred during
the beta deployment.

6.2.3 Governance Structure

The pilot operated under lightweight governance appropriate to its experimental scale. The phased
deployment approach—Alpha (internal testing with convenience testers), Beta Closed (invited exter-
nal testers with structured feedback), Beta Open (unrestricted public access following institutional
approval)—enabled iterative refinement and risk mitigation. Steering committee meetings during de-
velopment maintained alignment among technical implementation, institutional priorities, and user
needs. User feedback mechanisms provided continuous quality signals. Institutional oversight through
CIRED leadership approval preceded each deployment phase expansion.

This governance model sufficed for pilot demonstration but requires formalization for sustained
operation. Production deployment would require: designated operational responsibility (system ad-
ministrator, maintenance schedule, budget allocation), quality assurance procedures (periodic citation
accuracy audits, response quality assessment, user satisfaction monitoring), incident response proto-
cols (handling reported errors, addressing abuse, managing service disruptions), corpus curation poli-
cies (update frequency, content inclusion criteria), and decision-making authority (feature priorities,
technology migration, service continuation or termination).

CIRED.digital functions as pilot research project rather than production service, with experimental
status communicated clearly to users. This positioning provides flexibility for iteration and learning
while managing expectations around service reliability and continuity.

6.3 Implications for Institutional AI Deployment

The CIRED.digital pilot demonstrates that research institutions can deploy conversational AI systems
for knowledge access with modest environmental footprint (4.7 kg CO₂/year projected) and responsible
practices protecting user privacy while enabling verification through citations.

Key lessons for institutional deployment include:
Environmental impact ismanageable and optimizable. With Finland-based hosting, infrastructure

contributes about 63% of emissions. Moving from European-average grids to low-carbon grids (Finland,
Iceland, France, Norway) reduces total footprint substantially; model selection affects computational
emissions 5–10× (proportional to model size) and is environmentally meaningful when inference is a
non-trivial share of the total. Usage intensity improves efficiency—the system becomes greener per
query as adoption increases.

Privacy and transparency require architectural commitment. Anonymous sessions, optional data
collection, and explicit citation mechanisms must be designed in from the start rather than retrofitted.
User trust correlates stronglywith citation quality and verifiability. Clear communication of capabilities
and limitations reduces frustration and inappropriate use.

Phased deployment enables learning and risk mitigation. Progressive expansion from internal
testing to invited beta to public access allowed identification of interface issues, expectation mis-
matches, and quality concerns before broad exposure. This approach reduces reputational risk while
building confidence in system reliability.

35



Pilot governance differs from production requirements. Lightweight steering and monthly coor-
dination suffice for exploratory projects. Sustained operation requires formalized responsibility, quality
assurance procedures, incident response protocols, and institutional commitment to maintenance and
evolution.

Separate development from deployment assessment. Development token consumption (95% of
total project volume) occurred during a distinct experimental phase with different objectives and mod-
els. Environmental and cost assessment should focus on operational deployment rather than one-time
prototyping activities to provide realistic projections for sustained operation.

The evidence supports institutional RAG deployment as technically feasible, environmentally sus-
tainable at modest scale, and valuable for research dissemination when implemented with attention
to privacy, transparency, and appropriate governance. The path forward requires institutional hosting
transition, formalized operational frameworks, and continued optimization of resource efficiency.
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7 Conclusion

TheCIRED.digital project achieved its primary objectives: developing, testing, and deploying a natural-
language interface to CIRED’s publication corpus, while providing reproducible open-source infras-
tructure that other research institutions can replicate. In five months with modest resources, the team
delivered a production system, complete documentation, and an empirical analysis of usage and costs.

7.1 Project Achievements and Value

The project exemplifies open science. The full codebase is published on GitHub under the CeCILL-B
license, with documentation, deployment scripts, and a test suite. A parameterized, modular, container-
based architecture enables other institutions to deploy similar systems on their HAL collections with
limited effort (2–4 hours for skilled operators). An anonymized dataset of 290 user queries and ag-
gregated usage statistics are prepared for open deposit, enabling follow-up studies on question types
and system performance. The documentation also addresses practical deployment issues that are often
under-reported, reducing adoption barriers.

For CIRED, the system supports knowledge translation and demonstrates a commitment to repro-
ducible, shareable infrastructure. For the broader community, it shows that production RAG systems
are feasible with modest resources, provides a working reference implementation, contributes evidence
on adoption in an academic setting, and models responsible deployment emphasizing transparency, ci-
tations, and environmental awareness.

Outputs span infrastructure, analysis, and open science artifacts. CIRED.digital provides a digital
librarian with natural-language access to about 1,238 CIRED publications, deployed on reliable cloud
infrastructure with transparent citations. The code follows professional standards (Python 3.11+, type
annotations, linting, tests). Logging captured 1,849 interactions across 259 sessions, enabling empirical
analysis. Docker-based deployment supports one-command setup.

Limitations remain. Input token counting was not automated. User profiles were optional (low
capture), and feedback collection (thumbs/comments) was sparse. While 259 sessions suffice to identify
broad patterns, they do not support robust statistical inference. Finally, a single-system pilot limits
comparisons across RAG engines or LLM providers.

Empirical contributions include a first test bench for AI-mediated access to scientific publications. A
cost-benefit assessment supports feasibility (€50–200/year operating costs), with environmental impact
for the 96-day pilot estimated at 3–4 kg CO2. Practical lessons—PDF processing, multilingual support,
expectation management, and interface design—are documented. Anonymized query and interaction
logs support future studies of AI-assisted science mediation.

7.2 Future Development

For CIRED Leadership. The beta deployment reveals several strategic tensions requiring institutional
decision-making.

Adoption and Audience Strategy. Usage is concentrated among CIRED network users (40%) and
RENATER-affiliated researchers (20%). CIRED.digital can be positioned as an internal tool (institutional
memory, onboarding) or expanded toward journalists, policymakers, and students. The 85% in-scope
query rate signals utility for those who find it, but modest usage (259 sessions over 96 days) suggests
adoption barriers need attention.

Corpus Currency and Science Communication. Infrequent HAL updates reduce news value. CIRED
can invest in daily automated updates to support media engagement, or accept Cirdi as primarily
archival/synthesis, complementary to direct researcher-media interactions and the lab newsletter.

Interaction Paradigm and User Expectations. A search interface helped manage expectations and re-
duce hallucination risk. Yet 30% of users expected multi-turn context, and several requested structured
outputs (tables, timelines, comparisons). Future work can either meet these expectations (context: 2–6
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weeks; structured outputs: 3–4 weeks) or keep a focused documentary searchmodel, balancing mission
alignment against QA complexity.

Continuing operation requires modest costs (€50–200/year) plus 1–2 days/month for maintenance.
The system supports research valorization and open science, but CIRED already has multiple commu-
nication channels. The AI agent is new and may not be expected by journalists; update lag also limits
time-sensitive use, so CIRED should clarify its role in the communication ecosystem.

Internal vs. External Positioning. Retargeting toward internal audiences merits consideration. The
tool can support institutional memory and help researchers navigate colleagues’ work. However, in-
terns often relied only on supervisor-provided materials, suggesting that tool availability alone may
not change research practices.

Open issues and ideas are tracked at https://github.com/CIRED/cired.digital/issues. Near-
term enhancements could focus on:

• multi-turn context for follow-up questions (2–3 weeks),

• citation UI refinement (side-by-side view vs tooltips; 1–2 weeks),

• systematic quality evaluation (4–6 weeks),

• ingestion robustification toward daily HAL updates.

HAL full texts do not cover most CIRED output. The knowledge base could be extended backward
using scanned historical collections (modern OCR can help) and forward by adding paywalled arti-
cles if CIRED maintains a repository. The latter would change Cirdi’s nature by citing documents not
accessible to readers.

Infrastructure planning should prioritize institutional hosting evaluation now (CNRS Huma-Num
and partner IT). A transition within 12 months would reduce costs, improve sovereignty, and align
with research infrastructure strategy. If unavailable, continue commercial hosting while optimizing
providers and adding response caching.

Cirdi is a first step in a broader discussion onAI tools in CIRED infrastructure. Allowing researchers
to add documents to the RAG is attractive, but would require governance choices, especially for agen-
tic assistants. R2R includes experimental “deep research” features that were intentionally disabled in
Cirdi due to their epistemic and governance implications. CNRS-wide tools (e.g., via Mistral) may be
complemented by in-house systems offering tighter corpus control and institutional context.

For Other Research Institutions. The deployment pathway for replication institutions involves sev-
eral stages. First, assess HAL collection size and API access (optimal for 1,000–10,000 publications).
Second, evaluate LLM providers (Mistral offers lowest cost at €0.14/1M tokens). Third, provision mini-
mal infrastructure requiring 2–4 vCPU, 4–8 GB RAM, and 100 GB SSD (€5–20/month). Fourth, deploy
using provided Docker Compose configuration (2–4 hours work). Fifth, customize frontend and brand-
ing (1–2 weeks). Finally, plan ongoing operation allowing∼4 hours/month maintenance and quarterly
provider evaluation.

Recommendations: use a production-ready RAG engine; PostgreSQL+pgvector for collections un-
der 100K documents; a cost-effective LLM provider (e.g., Mistral); and EU-hosted infrastructure (e.g.,
Hetzner) for data residency. On process: track costs from day one, collect usage data with manda-
tory profiles, include environmental assessment, plan phased internal testing, and maintain regular
stakeholder engagement.

For the Research Community. AI-assisted science mediation insights from this project indicate sev-
eral critical design principles. Citation mechanisms are fundamental—users strongly prefer explicit
source attribution. Expectation clarity matters considerably—clear communication of capabilities re-
duces frustration significantly. Iterative refinement requires resource allocation for feedback collection
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and interface iteration. Cost-benefit remains favorable—RAG deployment remains accessible to most
research institutions.

Open science opportunities include standardized REST APIs for institutional RAG systems, feder-
ated networks (library-consortium style), evaluation frameworks for comparative studies, and environ-
mental reporting standards. Ultimately, HAL could offer RAG by default as an evolution of the search
box.

Medium-term priorities (6–18 months) include benchmarking alternative RAG engines (e.g., Lla-
maIndex, PaperQA), domain optimization (embeddings and chunking), support for replication by other
institutions, and governance formalization for sustained operation.

Strategic opportunities include federated infrastructure via CNRS Huma-Num or library consor-
tia, standardization and best practices, integration with research information systems, and educational
applications leveraging CIRED’s methodology literature.

7.3 Implications and Future Outlook

CIRED.digital shows how research institutions can deploy AI to support research, teaching, and science
communication while remaining aligned with open science, environmental responsibility, and cost-
effectiveness. It demonstrates that institutions need not rely on commercial platforms for AI-mediated
access to institutional knowledge: locally controlled systems are feasible, preserve independence, pro-
tect usage data, and can contribute to shared research infrastructure.

As AI-assisted tools spread, rigorous work on quality, ethics, and impact remains needed. This
project suggests that a digital librarian can support diverse information needs when designed with
explicit citations, user agency, and clear capability boundaries.

By quantifying costs (€50–200/year) and environmental impact (3–4 kgCO2 for the pilot), CIRED.digital
shows that AI deployment can be compatible with sustainability commitments. Compared to alterna-
tive access mechanisms (e.g., travel, printing), a thoughtfully implemented system can be part of sus-
tainable research infrastructure. From a cost perspective, RAG is a practical way to broaden access to
lab results that are otherwise restricted by commercial copyrights.

Overall, CIRED.digital validates a model of institutional AI systems that serve research missions
while remaining community-controlled, transparent, and sustainable in cost and impact. The evidence
in this report supports continued investment. Next steps—institutional hosting, targeted feature up-
grades, and support for replication—will determine how strongly this pilot shapes emerging practices
for responsible, cost-effective, and sustainable institutional RAG deployment.
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Glossary

Technical Terms

API (Application Programming Interface) A set of protocols that allows different software
applications to communicate. In this project, APIs
enable CIRED.digital to access LLM services from
providers like Mistral and OpenAI.

Chunking Theprocess of dividing long documents into smaller
segments (chunks) for more effective retrieval and
processing. CIRED.digital uses recursive chunk-
ingwith 512-token segments and 50–100 token over-
lap.

Docker / Containerization A platform that packages software and its depen-
dencies into standardized units (containers) for con-
sistent deployment across different computing en-
vironments. CIRED.digital uses Docker for repro-
ducible deployment.

Embedding / Vector Embedding A mathematical representation of text as arrays
of numbers (vectors) that capture semantic mean-
ing, enabling similarity search. Documents and
queries are converted to embeddings for retrieval.

Git / GitHub Version control system (Git) and code hosting plat-
form (GitHub) used for collaborative software de-
velopment. CIRED.digital’s complete codebase is
published on GitHub under open-source license.

Hallucination (in AI context) When a languagemodel generates plausible-sounding
but factually incorrect or unsupported information.
RAG systems reduce hallucinations by grounding
responses in retrieved documents.

LLM (Large Language Model) AI models trained on vast text corpora to under-
stand and generate human-like text. Examples in-
cludeGPT-4 (OpenAI), Claude (Anthropic), andMis-
tral models.

OCR (Optical Character Recognition) Technology that converts scanned images of text
into machine-readable text. Approximately 5–10%
of CIRED PDFs required OCR processing during
ingestion.

PostgreSQL / pgvector PostgreSQL is an open-source relational database;
pgvector is an extension enabling efficient storage
and search of vector embeddings for semantic sim-
ilarity.

RAG (Retrieval-Augmented Generation) A technique that combines information retrieval
from a knowledge basewith text generation, ground-
ingAI responses in authoritative source documents.
The core architecture of CIRED.digital.
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R2R “RAG to Riches” – an open-source RAG framework
developed by SciPhi that provides document in-
dexing, retrieval, and generation capabilities. The
engine underlying CIRED.digital.

Token The basic unit of text processing in LLMs, roughly
equivalent to 0.75words in English. LLMproviders
charge by tokens consumed (input + output).

VPS (Virtual Private Server) A virtualized server that provides dedicated com-
puting resources. CIRED.digital operates on aHet-
zner Cloud VPS with 3 vCPU, 4 GB RAM, and 100
GB storage.

French Research Infrastructure

CIRED (Centre International de Recherche sur l’Environnement et le Développement) A joint CNRS
research unit partneringwithAgroParisTech, EHESS,
CIRAD, and Ponts ParisTech, focusing on environment-
development intersections. The institution whose
publications CIRED.digital indexes.

CNRS (Centre National de la Recherche Scientifique) France’s national public research organization,
the largest fundamental research institution in Eu-
rope. CIRED is a CNRS joint research unit (UMR
8568).

GDPR / RGPD General Data Protection Regulation (Règlement Général
sur la Protection des Données) – European Union
regulation governing personal data protection and
privacy. CIRED.digital implements GDPR-compliant
anonymous sessions and optional data collection.

HAL (Hyper Articles en Ligne) France’s national open-access repository for schol-
arly publications. CIRED.digital retrieves its cor-
pus of ∼1,238 publications from the HAL-CIRED
collection.

Huma-Num CNRS research infrastructure supporting digital hu-
manities and social sciences through computing
resources, data services, and experimental AI tools
including RAG platforms.

RENATER (Réseau National de télécommunications pour la Technologie, l’Enseignement et la Recherche)
France’s national research and education network
providing internet connectivity to universities and
research institutions. 11% of CIRED.digital users
accessed the system via RENATER.

Domain-Specific Terms

IMACLIM A family of integrated assessment models devel-
oped at CIRED for analyzing interactions between
economic growth, technological change, and cli-
mate policy.
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IPCC (Intergovernmental Panel on Climate Change) The United Nations body for assessing climate
change science. CIRED researchers have contributed
as lead authors to IPCC reports, including work
recognized by the 2007 Nobel Peace Prize.

Open Science Amovement to make scientific research, data, and
dissemination accessible to all. CIRED.digital con-
tributes through open-source code, transparent doc-
umentation, and public data sharing.

Project-Specific Terms

Cirdi Thename given to CIRED.digital’s AI-powered sci-
entific documentalist (a playful reference to CIRED
combined with a personal name suffix).

HAL Collection A curated subset of HAL repository publications
associatedwith a specific institution or project. The
HAL-CIRED collection contains CIRED’s open-access
publications.

Scientific Documentalist The positioning of CIRED.digital as a specialized
search and synthesis tool for CIRED publications,
distinct from general-purpose chatbots. Empha-
sizes grounded, citation-backed responses over con-
versational AI.
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